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Non-uniqueness of quantized Yang–Mills theories
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Switzerland

Received 1 August 1996

Abstract. We consider quantized Yang–Mills theories in the framework of causal perturbation
theory which goes back to Epstein and Glaser. In this approach gauge invariance is expressed
by a simple commutator relation for theS-matrix. The most general coupling which is gauge
invariant to first order contains a two-parametric ambiguity in the ghost sector: a divergence-
and a coboundary-coupling may be added. We prove (not completely) that the higher orders
with these two additional couplings are also gauge invariant. Moreover, we show that the
ambiguities of then-point distributions restricted to the physical subspace are only a sum of the
divergences (in the sense of vector analysis). It turns out that the theory without divergence-
and coboundary-coupling is the simplest one in a quite technical sense. The proofs for the
n-point distributions containing coboundary-couplings are given up to third or fourth order only,
whereas the statements about the divergence-coupling are proved for all orders.

1. Introduction

1.1. The model

In a recent series of papers [1–5] non-Abelian gauge invariance has been studied in the
framework of causal perturbation theory [6, 7]. This approach, which goes back to Epstein
and Glaser [6], has the merit that one works exclusively with free fields, which are
mathematically well-defined, and that one performs only justified operations with them.

In causal perturbation theory one makes an ansatz for theS-matrix as a formal power
series in the coupling constant

S(g0, g1, . . . , gl) = 1 +
∞∑

n=1

1

n!

l∑
i1,...,in=0

∫
d4x1 · · · d4xn T i1...in

n (x1, . . . , xn)gi1(x1) · · · gin(xn).

(1.1)

The indicesi ∈ {0, 1, . . . , l} label different couplingsT i
1 , which are switched by different

test functionsgi ∈ S(R4). The operator-valued distributionT i1...in
n (x1, . . . , xn) has a vertex

of the typeT
is

1 at xs (1 6 s 6 n). TheTn’s are constructed inductively from the given first
order (see appendix A). In our model thei = 0-coupling

T 0
1 (x)

def= T 0A
1 (x) + T 0u

1 (x) (1.2)

is the usual three-gluon coupling

T 0A
1 (x)

def= 1
2igfabc : Aµa(x)Aνb(x)F νµ

c (x) : (1.3)
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plus the usual ghost coupling

T 0u
1 (x)

def= −igfabc : Aµa(x)ub(x)∂µũc(x) : . (1.4)

Here g is the coupling constant andfabc are the structure constants of the group SU(N ).
The gauge potentialsAµ

a , F
µν
a

def= ∂µAν
a − ∂νA

µ
a , and the ghost fieldsua, ũa are massless

and fulfil the wave equation. (We work throughout in the Feynman gaugeλ = 1.)
Gauge invariancemeans roughly speaking that the commutator of theT 0...0

n -distributions
with the gauge charge

Q
def=

∫
t=constant

d3x (∂νA
ν
a

↔
∂ 0ua) (1.5)

is a (sum of) divergence(s) (in the sense of vector analysis). To first order the following
relation holds:

[Q, T 0
1 (x)] = i∂νT

1ν
1 (x) (1.6)

where

T 1ν
1 (x)

def= igfabc[: Aµa(x)ub(x)F νµ
c (x) : − 1

2 : ua(x)ub(x)∂νũc(x) :]. (1.7)

We choose this expression to be thei = 1-coupling in (1.1) and call it aQ-vertex. Note
that only [Q, T 0A

1 ] is not a divergence. In order to have gauge invariance to first order, we
are forced to introduce the ghost couplingT 0u

1 , equation (1.4). However, the latter coupling
is not uniquely fixed by this procedure. The present paper deals with these ambiguities. We
define gauge invariance in arbitrary order [2] by

[Q, T 0...0
n (x1, . . . , xn)] = i

n∑
l=1

∂xl

ν T 0...010...0ν
n (x1, . . . , xn) (1.8)

where the upper index 1 inT 0...010...0
n is at thelth position. The divergences on the right-

hand side of (1.8) are precisely specified:T 0...010...0
n (x1, . . . , xn) is theTn-distribution of (1.1)

which has aQ-vertex (1.7) atxl and all other vertices areT 0
1 -couplings, equation (1.2).

Gauge invariance (1.8), which has been proved for all ordersn [1–5], implies the invariance
of the S-matrix S(g, 0, . . . , 0) (1.1) with respect to simple gauge transformations of
the free fields [5]. These transformations are thefree field version of the famous BRS
transformations[8]. Moreover, unitarity on the physical subspace[4] can be proved by
means of gauge invariance (1.8). The C-number identities expressing (1.8) imply the
Slavnov–Taylor identities[9]. Finally we mention that the four-gluon interaction is a second
order normalization term, which is uniquely fixed by gauge invariance (see [1, 5] and
equation (2.59)).

Let us turn to the above-mentioned non-uniqueness in the ghost sector. The most popular
method for deriving the ghost coupling is that of Faddeev and Popov. However, this method
of quantization contains loopholes (even in perturbation theory) [10]. Therefore, Beaulieu
[10] determined the quantum Lagrangian from the requirement of its full BRS invariance.
We proceed in an analogous way.Our aim is to work out the most general Yang–Mills theory
which is gauge invariant (1.8) for all orders and to investigate the physical and technical
implications of the ambiguities.

1.2. The most general coupling which is gauge invariant to first order

In order to simplify the notation we define an operatordQ by means of our gauge charge
Q (1.5)

dQA
def= QA − (−1)QgA(−1)QgQ (1.9)
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whereQg is the ghost charge operator [11, 12]

Qg
def= i

∫
t=constant

d3x : ũa(x)
↔
∂ 0ua(x) : [Qg, ua] = −ua [Qg, ũa] = ũa. (1.10)

and A is a suitable operator on the Fock space such that equation (1.9) makes sense. If
the ghost charge ofA is an integer, [Qg, A] = zA, z ∈ Z, the expression (1.9) is the
commutator or anticommutator ofQ with A. Note the product rule

dQ(AB) = (dQA)B + (−1)QgA(−1)QgdQB. (1.11)

One easily verifies [1] that

Q2 = 0 (1.12)

which implies that

(dQ)2 = 0. (1.13)

BecausedQ is nilpotent, it can be interpreted as coboundary-operator in the framework of a
homological algebra [11]. (The gradiation is given by the ghost charge (1.10).) Therefore,
we call an element of the range (kernel) ofdQ a coboundary (cocycle).

Let us add a coboundary

β1dQK1(x) β1 ∈ R arbitrary (1.14)

with

K1(x)
def= gfabc : ua(x)ũb(x)ũc(x) : (1.15)

to T 0
1 (x). Due to (1.13), gauge invariance to first order (1.6) remains true with the same

Q-vertexT 1ν
1 (1.7). Moreover, we add a divergence

β2∂µK
µ

2 (x) β2 ∈ R arbitrary (1.16)

with

K
µ

2 (x)
def= igfabc : Aµ

a (x)ub(x)ũc(x) : (1.17)

to T 0
1 (x). Simultaneously addingβ2dQKν

2 (x) to T 1ν
1 (x), our gauge invariance (1.6) is

obviously preserved. Are there further couplings which are gauge invariant to first order?
The answer is ‘no’ [11, 13], if the following, physically reasonable requirements are
additionally imposed.

(A) The coupling is a combination of at least three free field operators.
(B) The coupling has mass-dimension6 4. This guarantees (re)normalizability of the
theory, if the fundamental (anti)commutators have singular orderω([Aµ

a , Aν
b)]) = −2 and

ω({ua, ũb)}) = −2 (see appendix A and [2]).
(C) Lorentz covariance.
(D) SU(N )-invariance.
(E) The coupling has ghost charge zero: [Qg, T

0
1 ] = 0.

(F) Invariance with respect to the discrete symmetry transformations P, T and C.
(G) Pseudo-unitarityS1(g

∗
0, 0, . . . , 0)K = S1(g0, 0, . . . , 0)−1 forcesβ1, β2 to be real. (S1 is

the first ordern = 1 of (1.1) and K is a conjugation which is related to the adjoint [4, 12].)

Remarks. (1) The self-interaction of the gauge bosonsT A
1 (1.3) is unique. There is only

an ambiguity in the ghost coupling.
(2) In [5] the coupling to fermionic matter fields in the fundamental representation was

studied in detail. It is easy to see that the above requirements fix this coupling uniquely.
Therefore, we do not consider matter fields in this paper.
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1.3. Outline of the paper

The paper yields the following results.
(A) The higher orders with divergence- or coboundary-coupling (1.14)–(1.17) are gauge

invariant for all values ofβ1, β2 ∈ R (sections 2.2 and 2.4). (For the coboundary-coupling
this will be proved up to third order only.) The analogous result for the full BRS symmetry
in the usual Lagrangian approach is known in the literature, see, e.g., [10]. However, only
a one-parametric ambiguity is studied there. This difference will be discussed in remark (4)
of section 2.7.

(B) We will show that theTn’s with divergence-coupling are divergences with respect
to their divergence-vertices (section 2.2). TheTn’s (1 6 n 6 4) with coboundary-coupling
are divergences too, if they are restricted to the physical subspace [4] (section 2.8). This
will be an immediate consequence of a representation of theseTn’s, which will be proved
in section 2.4.

(C) The results at higher orders about the divergence-coupling and partly the results
about the coboundary-coupling are independent on the explicit expressions (1.2)–(1.4) and
(1.14)–(1.17) of the couplings (section 2.5). They apply to any gauge-invariant quantum
field theory.

(D) Gauge invariance for second-order tree diagrams requires normalization terms,
namely the usual four-gluon interaction and a four-ghost interaction (section 2.7). (The
latter appears only for(β1, β2) 6= (0, 0).) By studying these normalization terms we will
find a criterion which reduces the freedom in the choice ofβ1, β2 ∈ R to a one-parametric
set (sections 2.7 and 2.8). We will mention a second, quite technical criterion which
gives another restriction ofβ1, β2 (section 2.8). Together we will see that the theory with
β1 = 0 = β2 is the simplest one.

(E) TheQ-vertex is not uniquely fixed by gauge invariance to first order, equation (1.6).
In order to prove gauge invariance athigher orders of the theory(T 0

1 + β1dQK1 +
β2∂µK

µ

2 ), β1, β2 ∈ R (equations (1.2)–(1.4), (1.14), (1.16)), it is not necessary to modify
the above introducedQ-vertex (equation (1.7) plusβ2dQKν

2 ). Therefore, the ambiguity of
the Q-vertex is not very interesting. Nevertheless, we show in section 2.3 that the possible
modifications of theQ-vertex do not destroy gauge invariance at higher orders.

(F) In appendix C we assume that certain identities hold. They exclusively concern the
starting-couplingT 0

1 (1.2)–(1.4), itsQ-vertexT 1
1 (1.7) and its ‘Q-Q-vertex’ T 5

1 introduced
below (2.5), and are a kind of generalization of gauge invariance (1.8). A special case of
this assumption is verified in appendix B. By means of these identities we will be able to
prove the results about the coboundary-coupling forall orders.

2. Divergence- and coboundary-coupling at higher orders

2.1. Preparations

In order to study theTn’s with a divergence- (1.16) and/or a coboundary-coupling (1.14)
at higher ordersn > 2, we define a big theory which contains these couplings and some
auxiliary vertices

S1(g0, g1, . . . , g7)
def=

∫
d4x {T 0

1 (x)g0(x) + T 1ν
1 (x)g1ν(x) + T 2

1 (x)g2(x) + T 3ν
1 (x)gν(x)

+ T 4ν
1 (x)g4ν(x) + T

5νµ

1 (x)g5νµ(x) + T 6
1 (x)g6(x) + T 7

1 (x)g7(x)} (2.1)
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whereT 0
1 , T 1ν

1 are given by (1.2)–(1.4) and (1.7); furthermore,

T 4ν
1 (x)

def= β2K
ν
2 (x) (2.2)

T 2
1 (x)

def= ∂νT
4ν

1 (x) = β2∂νK
ν
2 (x) (2.3)

iT 3ν
1 (x)

def= dQT 4ν
1 (x) = β2dQKν

2 (x) (2.4)

T
5νµ

1 (x)
def= 1

2igfabc : ua(x)ub(x)F νµ
c (x) := −T

5µν

1 (x) (2.5)

T 6
1 (x)

def= β1K1(x) (2.6)

and

T 7
1 (x)

def= dQT 6
1 (x) = β1dQK1(x). (2.7)

For technical reasons the divergence-couplingT 2
1 (2.3) and the coboundary-couplingT 7

1
(2.7) are not directly added toT 0

1 ; they are both smeared out with a separate test function.
The appearance of the vertexT

5νµ

1 is motivated by the relation

dQT 1ν
1 (x) = i∂µT

5νµ

1 (x). (2.8)

Therefore, we sometimes callT 5
1 the ‘Q-Q-vertex’. Furthermore, note thatT

5νµ

1 is a cocycle

dQT
5νµ

1 (x) = 0. (2.9)

The verticesT 1ν
1 , T 3ν

1 andT 6
1 are fermionic; all other vertices are bosonic. The first ones

give rise to some additional minus signs in the inductive construction of theTn’s, but there
is no serious complication (see the appendix of [3]). We are interested in the physically
relevant theory

Tn(x1, . . . , xn)
def=

∑
i1,...,in∈{0,2,7}

T i1...in
n (x1, . . . , xn) (2.10)

which corresponds to the choiceg
def= g0 = g2 = g7 6= 0 andg1 = 0, g3ν = 0, g4ν =

0, g5νµ = 0 andg6 = 0 in thenth-orderS-matrix Sn(g0, g1, . . . , g7). Gauge invariance in
the sense (1.8) of this theory is formulated in terms of theQ-verticesT 1ν

1 , T 3ν
1 andT 8ν

1
def= 0.

This means that to first order

dQT 0
1 = i∂νT

1ν
1 (2.11)

dQT 2
1 = i∂νT

3ν
1 (2.12)

dQT 7
1 = 0 (2.13)

and that to arbitrary ordern

dQT i1...in
n = i

n∑
l=1

∂l
νT

i1...il−1 il+1 il+1...in ν
n (2.14)

wherei1, . . . , in ∈ {0, 2, 7} and

T i1...8...in ν
n

def= 0. (2.15)

We shall often use the property thatT 0...0
n is gauge invariant (1.8) [1–5].
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2.2. Higher orders with divergence-coupling

We are going to prove the following proposition.

Proposition 1. Choosing suitable normalizations, the relations

F 2...20...0
n (x1, . . . , xn) = ∂1

µ1
· · · ∂r

µr
F 4...40...0µ1...µr

n (x1, . . . , xn) (2.16)

F 32...20...0ν
n (x1, . . . , xn) = ∂2

µ2
· · · ∂r

µr
F 34...40...0νµ2...µr

n (x1, . . . , xn) (2.17)

F 2...210...0ν
n (x1, . . . , xn) = ∂1

µ1
· · · ∂r

µr
F 4...410...0µ1...µr ν

n (x1, . . . , xn) (2.18)

hold for all F = A′, R′, R′′, D, A, R, T ′, T , T̃ and to all ordersn.

Remarks. (1) The assertions (2.16)–(2.18) are generalizations of (2.3) to arbitrary orders
and mean that the divergence-structure ofT 2

1 can be maintained by constructing the higher
orders.

(2) Due to the symmetrization (A.14) theT ...
n , T̃ ...

n fulfil

T i1...in
n (x1, . . . , xn) = (−1)f (π)T iπ1...iπn

n (xπ1, . . . , xπn) ∀ π ∈ Sn (2.19)

where the Lorentz indices are also permuted, andf (π) is the number of transpositions of
fermionic vertices inπ . Therefore, equations (2.16)–(2.18) remain true forTn, T̃n, if the
indices are permuted according to (2.19).

(3) We will see in the proof that theT ...4...
n ’s on the right-hand side can be normalized

in an arbitrary symmetrical way. (A normalization is said to be symmetrical if the
correspondingT ...

n satisfies (2.19).) However, the normalization of theT ...2...
n ’s on the

left-hand side is uniquely fixed by the normalization of theT ...4...
n ’s.

Proof. We show that equations (2.16)–(2.18) can be maintained in the inductive step
(n − 1) → n described in appendix A. Obviously there are only two operations in this
step which need an investigation, namely (A) the construction of the tensor products
in A′

n, R
′
n, R

′′
n (equations (A.1)–(A.3)) and (B) the distribution splittingDn = Rn − An

(equations (A.7)).
(A) Let us consider equation (2.17) forA′ ...

n (equation (A.2))

A′ 32...20...0ν
n (x1, . . . ; xn) =

∑
X,Y,(x1∈X)

T̃ 32...20...0ν
k (X)T 2...20...0

n−k (Y, xn)

+
∑

X,Y,(x1∈Y )

T̃ 2...20...0
k (X)T 32...20...0ν

n−k (Y, xn). (2.20)

Inserting the induction hypothesis (2.16), (2.17) for lower ordersk, n − k, we obtain

(2.20) =
∑

(x1∈X)

∂2
µ2

· · · ∂s
µs

T̃
34...40...0νµ2...µs

k (X)∂1
µs+1

· · · ∂r−s
µr

T
4...40...0µs+1...µr

n−k (Y, xn)

+
∑

(x1∈Y )

∂1
µ1

· · · ∂s
µs

T̃
4...40...0µ1...µs

k (X)∂2
µs+2

· · · ∂r−s
µr

T
34...40...0νµs+2...µr

n−k (Y, xn)

= ∂2
µ2

· · · ∂r
µr

A′ 34...40...0νµ2...µr

n (x1, . . . , xn). (2.21)

The other verfications of (2.16)–(2.18) forA′
n, R′

n, R′′
n are completely analogous.

(B) According to (A) theDn’s, equation (A.4), fulfil (2.16)–(2.18). LetR34...40...0νµ2...µr
n

be an arbitrary splitting solution ofD34...40...0νµ2...µr
n . Then the definition

R32...20...0ν
n (x1, . . . , xn)

def= ∂2
µ2

· · · ∂r
µr

R34...40...0νµ2...µr

n (x1, . . . , xn) (2.22)
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yields a splitting solution ofD32...20...0ν
n , becauseR32...20...0ν

n (equation (2.22)) has its support
in 0+

n−1(xn) (equation (A.6)) andR32...20...0ν
n = D32...20...0ν

n on 0+
n−1(xn) \ {(xn, . . . , xn)}. The

procedure for equations (2.16), (2.18) is similar. �
Applying dQ to (2.16) we see thatdQT 2...20...0

n is a divergence

dQT 2...20...0
n (x1, . . . , xn) = ∂1

µ1
...∂r

µr
dQT 4...40...0µ1...µr

n (x1, . . . , xn) (2.23)

if there is at least one divergence-vertexT 2
1 . However, the divergences on the right-hand

side of (2.23) are derivatives with respect to the divergence-vertices and generally not with
respect to theQ-vertices. Consequently, equation (2.23) does not mean gauge invariance
of T 2...20...0

n in the sense of (1.8) ((2.14)). In order to obtain the latter we will prove the
following proposition.

Proposition 2. Starting with arbitrary symmetrical normalizations ofT 4...40...0
n and

T 4...410...0
n , . . . , T 4...40...01

n , there exists a symmetrical normalization ofT 34...40...0
n , . . . , T 4...430...0

n

such that the equation

dQT 4...40...0µ1...µr

n = i[T 34...40...0µ1...µr

n + · · · + T 4...430...0µ1...µr

n

+∂r+1
ν T 4...410...0µ1...µr ν

n + · · · + ∂n
ν T 4...40...01µ1...µr ν

n ] (2.24)

holds for all ordersn and forr = 1, 2, . . . , n verticesT 4
1 andT 3

1 , respectively.

Remarks. (1) The assertion (2.24) is a kind of gauge invariance equation, which is a
generalization of (2.4) and (2.11) to higher orders.

(2) We will prove (2.24) for allFn, F = A′, R′, R′′, D, A, R, T ′, T , T̃ by induction
on n.

(3) Applying ∂1
µ1

· · · ∂r
µr

to (2.24) we obtain the following corollary by means of
proposition 1.

Corollary 3. With the normalization of (2.16) the distributionsF 2...20...0
n , F =

A′, R′, R′′, D, A, R, T ′, T , T̃ are gauge invariant, i.e. they fulfil (2.14).

Proof of proposition 2. The proof follows the inductive construction of theTn’s. Since
(2.24) is a linear equation, we merely have to consider the same operations (A) (construction
of tensor products) and (B) (distribution splitting) as in the proof of proposition 1.

(A) Inserting the induction hypothesis (2.24) or gauge invariance (1.8) intodQT̃ 4...40...0
k

anddQT 4...40...0
n−k in

dQA′ 4...40...0µ1...µr

n (x1, . . . ; xn) =
∑
X,Y

[
(dQT̃

4...40...0µ1...µs

k (X))T
4...40...0µs+1...µr

n−k (Y, xn)

+ T̃
4...40...0µ1...µs

k (X)dQT
4...40...0µs+1...µr

n−k (Y, xn)
]

(2.25)

one easily obtains the result that theA′
n-distributions fulfil (2.24), and similarly this holds

for R′
n, R′′

n .
(B) Let R4...40...0

n , R4...410...0
n , . . . , R4...40...01

n , R434...40...0
n , . . . , R4...430...0

n be arbitrary splitting
solutions ofD4...40...0

n , D4...410...0
n , . . . , D4...40...01

n , D434...40...0
n , . . . , D4...430...0

n . Due to (A) the
Dn-distributions fulfil (2.24). Since the operatorsdQ and∂s

ν do not enlarge the support of
the distribution to which they are applied, by the definition

iR34...40...0µ1...µr

n

def= dQR4...40...0µ1...µr

n − i
[
R434...40...0µ1...µr

n + · · · + R4...430...0µ1...µr

n

+ ∂r+1
ν R4...410...0µ1...µr ν

n + · · · + ∂n
ν R4...40...01µ1...µr ν

n

]
(2.26)

we obtain a splitting solution ofiD34...40...0µ1...µr
n . Obviously theT ′

n

def= Rn −R′
n-distributions

fulfil (2.24) and this equation is maintained in the symmetrizationT ′
n → Tn (A.14). �
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2.3. Non-uniqueness of the Q-vertexT 1ν
1 at higher orders

The totalQ-vertex T ν
1/1

def= T 1ν
1 + T 3ν

1 of the theory (2.10) is not uniquely fixed by gauge
invariance in first-orderdQ(T 0

1 + T 2
1 + T 7

1 ) = i∂νT
ν

1/1. One has the freedom to replaceT ν
1/1

by

T ν
1/1 B

def= T ν
1/1 + γBν γ ∈ C arbitrary (2.27)

if ∂νB
ν = 0. Requiring additionally thatBν should fulfil the properties (A), (B), (C) and

(D) listed in section 1.2, and have ghost charge−1, there remains only one possibility,
namely

Bν(x) = ∂µDνµ(x) (2.28)

with

Dνµ(x)
def= igfabc : ua(x)Aν

b(x)Aµ
c (x) := −Dµν(x). (2.29)

This is proved in [11, 13]. TheTn-distribution with a modifiedQ-vertex T ν
1/1 B at

xl and with all other vertices being aT1
def= (T 0

1 + T 2
1 + T 7

1 )-coupling is denoted
by T ν

n/l B(x1, . . . , xl, . . . , xn). That for an originalQ-vertex T ν
1/1 is similarly denoted

by T ν
n/l(x1, . . . , xn), that for a vertexBν by Bν

n/l(x1, . . . , xn), and that for Dνµ by
D

νµ

n/l(x1, . . . , xn). The relationDνµ = −Dµν can be maintained in the inductive construction
of the Tn’s:

D
νµ

n/l = −D
µν

n/l . (2.30)

This is evident for the tensor products (A.1)–(A.3) and for the steps (A.4), (A.13)–(A.15).
Concerning the splitting (A.7), note that the antisymmetrization (inν ↔ µ) of an arbitrary
splitting solution yields again a splitting solution. Due to proposition 1 (equation (2.16)),
there exists a symmetrical normalization ofBν

n/l which fulfils

Bν
n/l = ∂l

µD
νµ

n/l . (2.31)

Moreover, the normalizations can be chosen such that (2.27) propagates to higher orders:

T ν
n/l B = T ν

n/l + γBν
n/l . (2.32)

We conclude that

∂l
νT

ν
n/l B = ∂l

νT
ν
n/l . (2.33)

AssumingTn, T ν
n/l (l = 1, . . . , n) to be gauge invariant (i.e. to fulfil (1.8)), there exists a

symmetrical normalization of the distributionsT ν
n/l B , such thatTn, T ν

n/l B are also gauge
invariant. The modification (2.27) of theQ-vertex does not destroy gauge invariance at
higher orders.

2.4. Higher orders with coboundary-coupling

The results of this section are summarized in the following proposition.

Proposition 4. Choosing suitable symmetrical normalizations the following statements hold
for all F = A′, R′, R′′, D, T , T̃ :
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At orders 16 n 6 4 theFn’s with coboundary-coupling have the representation

F 7...70...0
n = 1

r
{dQF 67...70...0

n + dQF 767...70...0
n + · · · + dQF 7...760...0

n } (2.34a)

+ i

r

n∑
l=r+1

∂l
ν{F 67...70...010...0ν

n + F 767...70...010...0ν
n + · · · + F 7...760...010...0ν

n }

(2.34b)

and they are gauge invariant (2.14) to orders 16 n 6 3

dQF 7...70...0
n = i

n∑
l=r+1

∂l
νF

7...70...010...0ν
n (2.35)

where eachF ...
n hasr upper indices 7 or 6, 16 r 6 n, and the upper index 1 is always at

the lth position.
Equations (2.34), (2.35), the gauge invariance (1.8) ofT 0...0

n (n ∈ N) and the second-
order identities

dQF 16ν
2 = i∂1

µF
56νµ

2 − F 17ν
2 (2.36)

dQF
56νµ

2 = F
57νµ

2 (2.37)

dQF 17ν
2 = i∂1

µF
57νµ

2 (2.38)

dQF 10ν
2 = i∂1

µF
50νµ

2 − i∂2
µF

11νµ

2 (2.39)

can all be fulfilled simultaneously.

Remarks. (1) ReplacingF i1...in
n (x1, . . . , xn) by T

i1
1 (x1) · · · T in

1 (xn) and applying (1.11),
(1.13), (2.7)–(2.9), (2.11) and (2.13), equations (2.34)–(2.39) are obviously fulfilled—this
is the intuition.

(2) Due to (2.19), similar equations with permuted upper indices hold forTn, T̃n.
(3) Applying dQ to (2.34) we obtain

dQF 7...70...0
n = i

r

n∑
l=r+1

∂l
ν{dQF 67...70...010...0ν

n + · · · + dQF 7...760...010...0ν
n }. (2.40)

However, this is not gauge invariance in the sense of theQ-vertices (2.14). The latter is
given by (2.35).

(4) By means of (2.34), (2.35) the list (2.36)–(2.39) of second-order identities, which
are a kind of gauge invariance equations, can be extended:

dQF 70
2 = i∂2

ν F 71ν
2 (2.41)

dQF 77
2 = 0 (2.42)

dQF 60
2 = F 70

2 − i∂2
ν F 61ν

2 (2.43)

1
2(dQF 67

2 + dQF 76
2 ) = F 77

2 . (2.44)

Proof of proposition 4. (A) Outline.The proof of (2.34), (2.35) is by induction for ordern.
However, we will see that the proof of (2.35) for ordern needs identities of the type
(2.36), (2.38), (2.39) at lower ordersk 6 n−1. However, equation (2.39) cannot be proved
by means of the general, elementary inductive methods of this section; it needs an explicit
proof which uses the actual couplings (1.2)–(1.4), (1.7) and (2.5). This proof, which is
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given in appendix B, is similar to the proof of gauge invariance (1.8) ofT 00
2 . To prove an

identity analogous to (2.39) at higher orders (see equation (2.50a) below), requires a huge
amount of work (cf [2–5]), which is not done in this paper. Therefore, the inductive proof
of gauge invariance (2.35) stops atn = 3. Moreover, the proof of (2.34) at ordern needs
(2.35) at lower ordersk 6 n − 1. Consequently, the representation (2.34) ofF 7...70...0

n will
be proved forn 6 4 only.

(B) Proof of (2.34) by means of (2.34), (2.35) at lower orders.We start with equation (A.2):

A′ 7...70...0
n (x1, . . . ; xn) =

∑
X,Y

{
s

r
T̃ 7...70...0

k (X)T 7...70...0
n−k (Y, xn) (2.45a)

+ r − s

r
T̃ 7...70...0

k (X)T 7...70...0
n−k (Y, xn)

}
(2.45b)

where T̃ 7...70...0
k (T 7...70...0

n−k ) has s (r − s) upper indices 7. Next we insert the induction
hypothesis (2.34) for̃T 7...70...0

k into (2.45a) (equation (2.34) forT 7...70...0
n−k into (2.45b)). Then

we apply (1.11) to the terms with adQ-operator and obtain

s

r
T̃ 7...70...0

k (X)T 7...70...0
n−k (Y, xn) = 1

r

[
dQ(T̃ 67...70...0

k (X)T 7...70...0
n−k (Y, xn)) (2.46a)

+ T̃ 67...70...0
k (X)dQT 7...70...0

n−k (Y, xn) + · · · + (2.46b)

+ i

k∑
l=s+1

{(∂l
ν T̃

67...70...010...0ν
k (X))T 7...70...0

n−k (Y, xn) + · · ·}
]

(2.46c)

and similarly for (2.45b). The next step is to insert the induction hypothesis (2.35) or
gauge invariance (1.8) (the latter in the special caser − s = 0) into dQT 7...70...0

n−k (Y, xn) in
(2.46b). Then we see that theA′

n-distributions fulfil (2.34): the terms of type (2.46a) add
up to (2.34a); (2.46b) and (2.46c) can be combined and all terms of this type give together
(2.34b). Similarly one proves that theR′

n-, R′′
n- and, therefore, theDn-distributions satisfy

(2.34).
We turn to the splitting (A.7). Let R67...70...0

n , R767...70...0
n , . . . , R67...70...010...0ν

n ,
R767...70...010...0ν

n , . . . be arbitrary splitting solutions of the correspondingD...
n -distributions.

By means of the definition

R7...70...0
n

def= 1

r
{dQR67...70...0

n + dQR767...70...0
n + · · ·}

+ i

r

n∑
l=r+1

∂l
ν{R67...70...010...0ν

n + R767...70...010...0ν
n + · · ·} (2.34′)

we obtain a splitting solution ofD7...70...0
n , analogously to (2.22), (2.26). Obviously

equation (2.34) is maintained in the remaining steps, namely the construction ofT ′
n, Tn

and T̃n (equations (A.13)–(A.15)).

(C) Proof of (2.35) by means of (2.34) for the same ordern, and by means of (2.34), (2.35)
and identities of the type (2.36), (2.38), (2.39) for lower orders.One can easily verify
(by inserting (2.35) and (1.8) for lower orders) that theA′

n-, R′
n-, and R′′

n-distributions
fulfil (2.35). Therefore, as usual gauge invariance (2.35) can be violated in the distribution
splitting only. However, to prove that this violation can be avoided by choosing a suitable
normalization, is a completely non-trivial business [1–5]. Moreover, the normalization of
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T 7...70...0
n is restricted by(2.34′). Therefore, we use another route to prove (2.35) forTn, T̃n.

We show that the right-hand side of (2.40) agrees with the right-hand side of (2.35), if a
suitable symmetrical normalization ofT 7...70...010...0ν

n , 1 6 r 6 n − 1, is chosen. (The case
r = n is trivial.) For this purpose we consider

A′ 7...70...010...0ν
n − 1

r
{dQA′ 67...70...010...0ν

n + · · · + dQA′ 7...760...010...0ν
n } (2.47)

where the upper index 1 is always at thelth position. We insert the definition (A.2) of theA′
n-

distributions. Similarly to (2.25) we then apply (1.11) and the induction hypothesis, i.e. we
insert (2.7), (2.8), (2.11) and (2.13) ifn = 2, and additionally (2.36), (2.38), (2.39), (2.41)–
(2.44) if n = 3. In this way we obtain

(2.47)= i

r

{ n∑
j=r+1 (j 6=l)

[±∂j
µA′ 67...70...010...010...0µν

n ± · · · ± ∂j
µA′ 7...760...010...010...0µν

n ] (2.48a)

+∂l
µA′ 67...70...050...0νµ

n + · · · + ∂l
µA′ 7...760...050...0νµ

n

}
. (2.48b)

In (2.48a) the two upper indices 1 are at thej th and lth positions, and we have a plus
(minus) if j < l (j > l). One proves (2.47)= (2.48) for theR′

n-, R′′
n-distributions in a

similar way.
Analogously to (2.30), the antisymmetryT 5νµ

1 = −T
5µν

1 , equation (2.5), can be
preserved in the inductive construction of theTn’s. Starting with arbitrary splitting
solutions R

67...70...050...0νµ
n = −R

67...70...050...0µν
n , . . . , R

7...760...050...0νµ
n = −R

7...760...050...0µν
n ,

R67...70...010...010...0
n , . . . , R7...760...010...010...0

n we may (in a manner similar to that for(2.34′))
defineR7...70...010...0

n by the equation (2.47)=(2.48) (withA′...
n everywhere replaced byR...

n ).
This equation is not destroyed in the construction ofT ′

n, Tn and T̃n. Summing up, we have
proved

F 7...70...010...0ν
n − 1

r
{dQF 67...70...010...0ν

n + · · · + dQF 7...760...010...0ν
n }

= i

r

{ n∑
j=r+1 (j 6=l)

[±∂j
µF 67...70...010...010...0µν

n ± · · · ± ∂j
µF 7...760...010...010...0µν

n ]

+ ∂l
µF 67...70...050...0νµ

n + · · · + ∂l
µF 7...760...050...0νµ

n

}
(2.49)

for all F = A′, R′, R′′, D, A, R, T ′, T , T̃ and for n 6 3, 1 6 r 6 n − 1. We insert this
equation into

n∑
l=r+1

∂l
ν

{
F 7...70...010...0ν

n − 1

r
[dQF 67...70...010...0ν

n + · · · + dQF 7...760...010...0ν
n ]

}
(2.50)

for F = T , T̃ . Taking the different signs of the(j, l)- and the (l, j)-term in∑
j,l (j 6=l) ±∂l∂jF ...010...010...

n and F
...5...νµ
n = −F

...5...µν
n into account, we see that (2.50)

vanishes. This is the desired result.

Proof of equations (2.36)–(2.39).The first identity (2.36) is the casen = 2, r = 1 of
(2.49). All of equations (2.36)–(2.39) are easily verified for theA′...

2 -distributions, etc, and,
therefore, can be violated only in the splitting. The latter is no problem for (2.37), since
we may defineR57νµ

2
def= dQR

56νµ

2 for an arbitrary splitting solutionR56
2 . Applying dQ to

(2.36), we obtain (2.38) by means of (2.37). Equation (2.39) remains, which is proved
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in appendix B by explicitly inserting the actual couplings. It turns out that there exists a
normalization ofT 10ν

2 (x1, x2) = T 01ν
2 (x2, x1) such that (2.39) and gauge invariance (1.8) (to

second order) are satisfied simultaneously. One easily verifies that this is the only problem
of compatibility in (2.34)–(2.39) and (1.8). For example, to second order the distributions
T

56νµ

2 = −T
56µν

2 , T 61
2 , T 60

2 , T 67
2 can be normalized in an arbitrary symmetrical way. Then

the normalizations ofT 17
2 , T 57

2 , T 70
2 , T 77

2 are uniquely fixed by (2.36), (2.37), (2.43), (2.44),
and all identities (2.36)–(2.38) and (2.41)–(2.44) are fulfilled. The remaining distributions
T 00

2 , T 10
2 , T 50

2 andT 11
2 appear only in (1.8) and (2.39). �

If the identities (F = T , T̃ )

dQF 5...51...10...0
n = i

t+s∑
j=t+1

(−1)(j−t−1)∂jF 5...51...151...10...0
n + i(−1)s

n∑
j=t+s+1

∂jF 5...51...10...010...0
n

n ∈ N 0 6 t, s 6 n t + s 6 n (2.50a)

hold (whereF 5...51...10...0
n on the left-hand side hast indices 5,s indices 1 and all derivatives

on the right-hand side are divergences, the Lorentz indices being omitted), one can prove the
representation (2.34) and gauge invariance (2.35) for all orders. This is shown in appendix C
by a generalization of the proof shown here. Unfortunately, an inductive proof of (2.50a)
by means of the simple technique of this section fails because of the splitting (A.7): there
is no term in (2.50a) which has neither adQ-operator nor a derivative. We emphasize that
the identities (2.50a) do not depend on the explicit form (1.14), (1.15) of the coboundary
coupling (no upper indices 6 or 7 appear in (2.50a)). These identities concern solely the
starting-couplingT 0

1 , its Q-vertexT 1
1 and itsQ-Q-vertexT 5

1 .

Remark. The compatibility of (2.39) and gauge invariance (1.8) to second order is
remarkable in the tree sector: each of these two identities fixes the normalization ofT 10

2 |tree

uniquelyand in fact these two normalizations agree (see appendix B and section 3.2 of [5]).
This is a further hint that our gauge invariance (1.8) relies on a deeper (cohomological?)
structure. Knowledge of the latter would presumably shorten the proof of (1.8) and would
be an excellent tool for proving the missing identities (2.50a).

2.5. Generality of the results

In the preceeding sections 2.2 and 2.4, the explicit structures of the starting theoryT 0
1

(1.2), of the correspondingQ-vertex T 1ν
1 (1.7), of the divergence-coupling (1.16), (1.17)

and of the coboundary-coupling (1.14), (1.15) have not been needed. We have used only
the following properties.

(i) The starting theoryT 0
1 is gauge invariant with respect to theQ-vertexT 1ν

1 in all orders
which are considered.
(ii) There exists aQ-Q-vertexT

5νµ

1 (x) which fulfils

T
5νµ

1 = −T
5µν

1 dQT
5νµ

1 = 0 dQT 1ν
1 (x) = i∂µT

5νµ

1 (x). (2.51)

(iii) The second-order identity (2.39) holds and is compatible with gauge invariance (1.8)
of T 00

2 .

Only (i) is needed in section 2.2. Therefore, the results about the divergence-coupling
apply to any gauge-invariant quantum field theory, e.g. to quantum gravity [14]. This also
holds for (2.34) to second order, i.e. (2.43), (2.44).

If in addition (ii) is fulfilled (dQT 5
1 = 0 is not needed for the following statement),

gauge invariance (2.35) is proved to second order (i.e. equations (2.41), (2.42) are valid),
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and this implies the identities (2.34) up to third order. Note that the modifiedQ-vertex
T ν

1/1 B (2.27) also satisfies (ii):

dQT ν
1/1 B = i∂µT

5νµ

1 B (2.52)

with

T
5νµ

1 B

def= T
5νµ

1 − iγ dQDνµ = −T
5µν

1 B dQT
5νµ

1 B = 0. (2.53)

For a model which satisfies (i), (ii) and all identities (2.50a) (equation (2.39) is a
special case of the latter), the statements (2.34), (2.35) about the coboundary-coupling are
also proved for all orders.

2.6. n-point distributions with divergence- and coboundary-coupling

The general case (2.10) ofTn containing the ordinary Yang–Mills couplingT 0
1 , divergence-

and coboundary-coupling can easily be traced back to the results of the preceeding sections
2.2, 2.4 and 2.5. We replaceT 0

1 by

T̄ 0
1

def= T 0
1 + T 2

1 = T 0
1 + β2∂νK

ν
2 (2.54)

andT 1ν
1 by

T̄ 1ν
1

def= T 1ν
1 + T 3ν

1 = T 1ν
1 − iβ2dQKν

2 . (2.55)

Due to corollary 3, thēT 0
1 -theory is gauge invariant with respect to theQ-vertex T̄ 1ν

1 in all
orders, i.e. property (i) of section 2.5 is fulfilled. Obviously property (ii) also holds with
the oldT 5

1 -vertex (2.5):dQT̄ 1ν
1 = i∂µT

5νµ

1 . It would be very suprising if (2.39) would be
wrong for the(T̄ 0

1 , T̄ 1ν
1 , T

5νµ

1 )-couplings. By means of proposition 4 we conclude that the
generaln-point distributions (2.10) (with coboundary-and divergence-coupling) are gauge
invariant to second (and most probably to third order), and we obtain the representation
(2.34) with respect to the coboundary-vertices up to third (fourth) order.

Let us describe an alternative method. We replaceT 0
1 by

T̄ 0
1

def= T 0
1 + T 7

1 = T 0
1 + β1dQK1. (2.56)

The Q-vertex (1.7) needs no change:dQT̄ 0
1 = i∂νT

1ν
1 . Proposition 4 (2.35) tells us that

the T̄ 0
1 -theory is gauge invariant up to third order. Applying corollary 3 we obtain gauge

invariance (2.14) of the generalTn’s (2.10) up to third order. Moreover, due to proposition 1,
these distributions are divergences with respect to their divergence-vertices at any order.

2.7. Gauge-invariant normalization of second-order tree diagrams

We only consider the tree sector and start with the following normalization ofT2(x1, x2)

(2.10) (T2
def= T 00

2 + T 20
2 + T 02

2 + T 22
2 + T 70

2 + T 07
2 + T 77

2 + T 27
2 + T 72

2 ). The C-number
distributions ofT20|tree (the lower index 0 indicates this special normalization) are

tO(x1 − x2) ∼ DF (x1 − x2), ∂µDF (x1 − x2), ∂µ∂νDF (x1 − x2) (2.57)

and they have no local terms. The singular orderω of tO (the number of derivatives onDF

in (2.57)) can be computed from the combinationO of the four external free field operators
(seeω(O) in (A.17)) and isω(O) = −2, −1, 0. For each four-leg combinationO with
ω(O) = 0 we may add a local term

NO(x1 − x2) = COδ(x1 − x2) : O(x1 − x2) : (2.58)
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to T20, whereCO is a free normalization constant (A.12). Gauge invariance (2.14) fixes the
values ofCO uniquely [1, 5, 13]. InT 00

2 the normalization term

NAAAA(x1 − x2) = − 1
2ig2fabrfcdrδ(x1 − x2) : AµaAνbA

µ
c Aν

d : (2.59)

is required [1, 5]. This is the four-gluon interaction, which propagates to higher orders
in the inductive construction of theTn’s (see section 4.2 of [15]). The normalization
terms (2.58) ofT 20

2 , . . . , T 72
2 which are needed for gauge invariance (2.14) can quickly be

calculated by using our results. We have proved thatT 20
2 , T 22

2 , T 70
2 , T 77

2 andT 27
2 are gauge

invariant with the normalizations given by proposition 1, equation (2.16) (proposition 4,
equation (2.34)). (In the case ofT 27

2 we perform the replacement (2.54), (2.55) (or
alternatively (2.56)), before applying (2.34) (equation (2.16))). Therefore, we simply have
to pick out the local terms in∂1

µT
40µ

2 (= T 20
2 ), ∂1

µ∂2
ν T

44µν

2 (= T 22
2 ), dQT 60

2 + i∂2
ν T 61ν

2 (= T 70
2 )

and in 1
2(dQT 67

2 + dQT 76
2 )(= T 77

2 ). In the tree sector there are no local terms in
T 40

2 , T 44
2 , T 60

2 , T 61
2 , T 67

2 (their normalization is unique) and, therefore, neither are there any
in dQT 60

2 , dQT 67
2 . All local terms are generated by the divergences in∂1

µT
40µ

2 , ∂1
µ∂2

ν T
44µν

2

or i∂2
ν T 61ν

2 , due to�DF (x1 − x2) = δ(x1 − x2). It turns out that all these local terms are
four-ghost interactions, which add up to

Nuuũũ(x1 − x2) = −ig2
(

1
2(β2)

2 + β1 − 2β1β2
)
fabrfcdrδ(x1 − x2) : uaubũcũd : (2.60)

in agreement with the much longer calculation in [13].

Remarks. (1) The powers ofβ1, β2 in (2.60) tell us the origin of the corresponding term.
For example the term∼ β1β2 comes fromT 27

2 + T 72
2 .

(2) We have seen that on the tree sector the normalizations ofT 20
2 , . . . , T 72

2 areuniquely
fixed by (2.16) or (2.34). However, this does not imply that gauge invariance fixes the
normalization ofT 20

2 |tree, . . . , T
72

2 |tree uniquely. The latter statement is a by-product of the
calculation in [13].

(3) In agreement with our observations at first order (see remark (1) of section 1.2),
there is no ambiguity in the four-gluon interaction (2.59)—it is independent ofβ1, β2.

(4) The most general coupling which is gauge invariant (2.14) up to all orders (this is
not proved completely for the coboundary-coupling) has been given. It can be compared
with the most general Lagrangian (written in terms of interacting fields) which is invariant
under the full BRS transformations of the interacting fields—see equation (3.13) of [10].
For this purpose we must choose the Feynman gaugeλ = 1 in this equation. Then one
easily verifies that the terms∼ g and∼ g2 in the interaction part of this Lagrangian agree
with (T 0

1 + β1dQK1 + β2∂µK
µ

2 ) ∼ g and withNAAAA, Nuuũũ ∼ g2, if we setβ2 = 2β1 and
identify the free parameterα of [10] with β2 = 2β1. There is only a one-parametric freedom
in [10] which is given by adding to the Lagrangianαs(· · ·). The latter is a coboundary with
respect to the BRS operators. In doing so the Lagrangian remainss-invariant, due to the
nilpotency ofs. This seems to be analogous to our coboundary-couplingβ1dQK1 (1.14).
However, we see fromα = 2β1 = β2 that there is not a complete correspondence: a change
of α also means the addition of a divergenceβ2∂µK

µ

2 (1.16). Since in our framework
the interaction is switched off byg ∈ S(R4), our gauge invariance is not [Q, Tn] = 0
but [Q, Tn] = (divergences), and, therefore, we have the freedom of adding a divergence-
coupling (1.16) toT1. This explains the fact that we have a two-parametric freedom and
not only a one-parametric one.

(5) We call a normalization termNO (2.58) ‘natural’, if there is a corresponding non-
vanishing non-local term, more precisely ifT20|tree (2.57) contains a non-vanishing C-number
distribution tO (with the sameO). NAAAA (2.59) is of this kind. It can be generated by
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replacing

∂µ∂νDF (x1 − x2) by
[
∂µ∂νDF (x1 − x2) − 1

2gµνδ(x1 − x2)
]

(2.61)

in tAAAA [1, 5]. The other normalization terms are called ‘unnatural’, since they do
not naturally arise in the inductive construction of theTn’s - the numerical distribution
dO = 0 is split in dO(x1 − x2) = δ(4)(x1 − x2) − δ(4)(x1 − x2). Nuuũũ is unnatural,
because in the corresponding diagram∂µA

µ
a (x1) and∂νA

ν
b(x2) are contracted, which gives

−iδabg
µν∂µ∂νD

+
0 (x1 −x2) = 0. (D+

0 (x1 −x2) is the positive frequency part of the massless
Pauli–Jordan distribution.) Note that the proof of gauge invariance (1.8) at higher orders
n > 3 [2–5] uses normalizations which could be unnatural in an analogous sense.

2.8. Non-uniqueness of quantized Yang–Mills theories

To simplify the discussion we assume that (2.34) and (2.35) hold to any order. Then the
ambiguities of quantized Yang–Mills theories, which are given by the free choice of the
parametersβ1, β2 ∈ R, equations (1.14), (1.16), are not restricted by gauge invariance at
higher orders, due to corollary 3 and (2.35). The freedom is reduced to a one-parametric
set if we admit only natural normalization terms for second-order tree diagrams

Nuuũũ = 0 ⇐⇒ β1 = (β2)
2

4β2 − 2
β2 6= 1

2
. (2.62)

This prescription partially agrees with the Faddeev–Popov procedure: the exponentiation
of a determinant can generate only terms quadratic in the ghosts. Therefore, the Faddeev–
Popov method cannot yield a four-ghost interaction.

There is a more technical criterion which gives another restriction of the ambiguities
and roughly speaking requires that the cancellations in the gauge invariance equation (2.14)
be simple. To be more precise let us consider this equation for second-order tree diagrams.
In the natural operator decomposition [5] the terms∼ ∂µδ(x1 − x2) cancel completely iff

β2 = 0. (2.63)

(For β2 6= 0 the terms∼ ∂δ : O : must be combined with terms∼ δ : O′ :, where the
difference between the two operator combinationsO′ andO is thatO′ has one derivative
more.) Let us assume that one can prove C-number identities (called ‘Cg-identities’
[2–5]) which express gauge invariance (2.14). Then the transition from the natural operator
decomposition of (2.14) to the Cg-operator decomposition (i.e. the op. dec. in which the
Cg-identities hold) is much more complicated forβ2 6= 0 than forβ1 = 0 = β2 [5]. We
see from (2.62), (2.63) thatthe theory withβ1 = 0 = β2 is the simplest one. However, this
does not exclude the other values ofβ1, β2, since we can construct a Lorentz-, SU(N )- and
P-, T-, C-invariant, (re)normalizable, gauge-invariant and pseudo-unitaryS-matrix for any
choice ofβ1, β2 ∈ R.

We turn to the physical consequences of the freedom in the choice ofβ1, β2. For this
purpose we considerPTn(x1, . . . , xn)P , whereTn is given by (2.10) andP is the projector
on the physical subspace [4]. By means ofdQA

µ
a = i∂µua, dQua = 0, dQũa = −i∂νA

ν
a

and the fact that∂µua and∂νA
ν
a are unphysical fields, we conclude that

PdQFn(x1, . . . , xn)P = 0 (2.64)

where F = A′, R′, R′′, D, A, R, T ′, T , T̃ . Together with propositions 1 and 4
(equations (2.16), (2.34)), we obtain

PTn(x1, . . . , xn)P = T 0...0
n (x1, . . . , xn) + (sum of divergences). (2.65)
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On the right-hand sidethe dependence onβ1, β2 is exclusively in the divergences. However,
the infrared behaviour of Yang–Mills theories is not under control. Therefore, we cannot
conclude that the divergences in (2.65) vanish in the adiabatic limitg → 1.
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Appendix A. Inductive construction of the Tn’s according to Epstein and Glaser

The inputs to the inductive construction of theTn’s (1.1) are theT i
1 ’s (e.g. equations (1.2)–

(1.4), (1.7), (2.2)–(2.7)) in terms offree fields. The couplingsT i
1 are roughly speaking given

by the interaction Lagrangian densities. Let us summarize the inductive step as a recipe.
For the derivation of this construction from causality and translation invariance (only these
two requirements are needed) we refer the reader to [6, 7]. In analogy with (1.1) we
denote then-point distributions of the inverseS-matrix S(g0, . . . , gl)

−1 by T̃n(x1, . . . , xn).
Having constructed allTk, T̃k for lower ordersk 6 n−1, we can define the operator-valued
distributionsR′

n, A′
n, R′′

n , which are sums of tensor products:

R′
n(x1, . . . ; xn)

def=
∑
X,Y

Tn−k(Y, xn)T̃k(X) (A.1)

A′
n(x1, . . . ; xn)

def=
∑
X,Y

T̃k(X)Tn−k(Y, xn) (A.2)

R′′
n(x1, . . . ; xn)

def=
∑
X,Y

Tk(X)T̃n−k(Y, xn) (A.3)

whereX
def= {xi1, . . . , xik }, Y

def= {xik+1, . . . , xin−1}, X ∪ Y = {x1, . . . , xn−1} and the sum is
over all partitions of this kind with 16 k ≡| X |6 n − 1. In order to simplify the notation,
the Lorentz indices and the upper indicesis denoting the kind of vertexT is

1 (xs) (see, e.g.,
equations (2.1)–(2.7)) are omitted. No confusion should arise, sinceis is strictly coupled to
the spacetime argumentxs . One can prove that

Dn
def= R′

n − A′
n (A.4)

has causal support

suppDn(x1, . . . ; xn) ⊂ (0+
n−1(xn) ∪ 0−

n−1(xn)) (A.5)

where

0±
n−1(xn)

def= {(x1, . . . , xn) ∈ R4n|xj ∈ xn + V̄ ±, ∀ j = 1, . . . , n − 1}. (A.6)

The crucial step in the inductive construction is thecorrect distribution splittingof Dn:

Dn = Rn − An (A.7)

with

suppRn(x1, . . . ; xn) ⊂ 0+
n−1(xn) and suppAn(x1, . . . ; xn) ⊂ 0−

n−1(xn). (A.8)

For this purpose we expand the operator-valued distributions in the normally ordered form:

Fn(x1, . . . , xn) =
∑
O

fO(x1 − xn, . . . , xn−1 − xn) : O(x1, . . . , xn) : (A.9)
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whereF = R′, A′, D, R, A, T , T̃ and O(x1, . . . , xn) is a combination of the free field
operators. The coefficientsfO are C-number distributions. Due to translation invariance,
they depend only on the relative coordinates and, therefore, are responsible for the support
properties. Consequently, the splitting must be done in these C-number distributions.
Obviously, the critical point for the splitting is the UV-point

0+
n−1(xn) ∩ 0−

n−1(xn) = {(x1, . . . , xn) ∈ R4n|x1 = x2 = · · · = xn}. (A.10)

In order to measure the behaviour of the C-number distributionf in the vicinity of this
point, one defines an indexω(f ), which is called thesingular order off at x = 0 [6, 7].
We will need the following example. LetDa, a

def= (a1, . . . , am), be a partial differential
operator. Then

ω(Daδ(m)(x1, . . . , xm)) = |a| def= a1 + · · · + am. (A.11)

If ω(dO) < 0, the splitting ofdO is trivial and uniquely given by multiplication with a
step function [6, 7].

If ω(dO) > 0, one must perform the splitting more carefully [6, 7]. Moreover, it is not
unique. One has an undetermined polynomial which is of degreeω(dO) (the degree cannot
be higher since renormalizability requiresω(rO) = ω(dO)),

rO(x1 − xn, . . . , xn−1 − xn) = r0
O(· · ·) +

ω(dO)∑
|a|=0

CaD
aδ(4(n−1))(x1 − xn, . . . , xn−1 − xn)

(A.12)

wherer0
O is a special splitting solution andCa are the undetermined normalization constants.

If one also performs the splitting in this case by multiplying with a step function, one
obtains the usual, UV-divergent Feynman rules. However, this procedure is mathematically
inconsistent. The correct distribution splitting saves us from UV-divergences.

From Rn one constructs

T ′
n

def= Rn − R′
n (A.13)

andTn is obtained by symmetrization ofT ′
n

T i1...in
n (x1, . . . , xn) =

∑
π∈Sn

1

n!
T ′ iπ1...iπn

n (xπ1, . . . , xπn). (A.14)

In order to finish the inductive step we must construct

T̃n
def= −Tn − R′

n − R′′
n. (A.15)

One can prove that (A.14), (A15) are the correctn-point distributions ofS(g0, . . . , gl) (1.1)
and S(g0, . . . , gl)

−1, respectively, fulfilling the requirements of causality and translation
invariance. Note that

ω
def= ω(tO) = ω(rO) = ω(dO). (A.16)

The undetermined local terms (A.12) go over fromrO to tO. The normalization constantsCa

are restricted by Lorentz- and SU(N )-invariance, the permutation symmetry (2.19), discrete
symmetries, pseudo-unitarity and gauge invariance (cf section 1.2). The latter restriction
plays an important role in this paper.

In our Yang–Mills model one can prove by means of scaling properties [7] that

ω 6 ω(O)
def= 4 − b − g − d (A.17)

where b is the number of gauge bosons (A, F ), g the number of ghosts (u, ũ) and
d the number of derivatives (F, ∂ũ, ...) in O. The proof of (A.17) in [2] is written
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for T 0...0
n and T 10...0

n . However, it goes through without change for allT i1...in
n with

i1, . . . , in ∈ {0, 1, 2, 3, 5, 7} (see equations (2.1)–(2.7) for the notation), especially for the
physically relevantTn (2.10). The couplingsT 4

1 and T 6
1 have mass dimension 3 instead

of 4. Therefore, there exists a lower upper boundω̃(O) for the singular orderω of diagrams
with at least one vertexT 4

1 or T 6
1 : ω 6 ω̃(O) < ω(O) = 4 − b − g − d. The fact thatω is

bounded in the ordern of the perturbation series (here it is even independent ofn) is the
(re)normalizability of the model.

Appendix B. Proof of equation (2.39)

Since equation (2.39) is a gauge invariance equation, it can be violated only in the splitting
(A.7) and solely by local terms. No vacuum diagrams appear in (2.39).

B.1. Tree diagrams

We work with the technique of [1]. The splittingD...
2 |tree → R...

20|tree is done by replacing
D0(x1 − x2) (which is the mass zero Pauli–Jordan distribution) with its retarded part
Dret

0 (x1 − x2) everywhere. As in (2.57), the lower index 0 inR...
20 and inT ...

20
def= R...

20 − R′...
2

(A.13), (A14) indicates this special normalization in the tree sector. Note�Dret
0 = δ(4), in

contrast to�D0 = 0. This is the reason for the appearance of local termsAν which destroy
(2.39)

dQR10ν
20 |tree = i∂1

µR
50νµ

20 |tree− i∂2
µR

11νµ

20 |tree− Aν. (B.1)

Picking out all local terms (they all are generated in the divergences on the right-hand side
due to�Dret

0 = δ(4)) one finds that

Aν(x1, x2) = −g2fabrfcdr

{
1
2δ(x1 − x2) : uaubAµcF

µν

d :

+ 1
2∂µδ(x1 − x2) : ua(x1)ub(x1)Aµc(x2)A

ν
d(x2) :

+ [gτµ∂νδ(x1 − x2) − gνµ∂τ δ(x1 − x2)] : Aτa(x1)ub(x1)Aµc(x2)ud(x2) :
}

= i∂1
µBνµ(x1, x2) + i∂2

µBνµ(x1, x2) + dQNν(x1, x2) (B.2)

with

Bνµ(x1, x2)
def= 1

2ig2fabrfcdrδ(x1 − x2) : uaubA
µ
c Aν

d : (B.3)

Nν(x1, x2)
def= −ig2fabrfcdrδ(x1 − x2) : AµaubA

µ
c Aν

d : . (B.4)

(Note that a term∼ fabrfcdrδ(x1 − x2) : uaubuc∂
νũd : vanishes due to the antisymmetry of

the operator part ina, b, c and the Jacobi identity for thef...’s.) Obviously the symmetries
T

50νµ

20 (x1, x2) = −T
50µν

20 (x1, x2) and T
11νµ

20 (x1, x2) = −T
11µν

20 (x2, x1) are preserved in the
finite renormalizations

T
50νµ

2
def= T

50νµ

20 − Bνµ (B.5)

T
11νµ

2
def= T

11νµ

20 + Bνµ (B.6)

and

T 10ν
2

def= T 10ν
20 + Nν. (B.7)
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Due to (B.1), (B2), theseT ...
2 -distributions (B.5)–(B7) satisfy (2.39) on tree level, and one

easily verifies that (2.39) fixes the normalization ofT 10
2 |tree uniquely.

On the other hand the normalization in the tree sector ofT 10ν
2 (x1, x2) = T 01ν

2 (x2, x1) is
uniquely determined by gauge invariance (1.8) at second order (see section 3.2 of [5])

dQT 00
2 = i∂1

ν T 10ν
2 + i∂2

ν T 01ν
2 (B.8)

whereT 00
2 |tree is normalized by (2.59) (four-gluon interaction). These two normalizations

of T 10
2 |tree (equations (B.7) and (B.8)) agree exactly.

B.2. Two-leg diagrams

We denote the numerical two-leg distributions in the following way:

F 10ν
2 (x1, x2)

∣∣
2-leg= f

10νµ

uA (x1 − x2) : ua(x1)Aµa(x2) :

+ f
10νµ

Au (x1 − x2) : Aµa(x1)ua(x2) : + · · · : uF : + · · · : Fu : (B.9)

F
50νµ

2 (x1, x2)
∣∣
2-leg= f 50νµ

uu (x1 − x2) : ua(x1)ua(x2) : (B.10)

F
11νµ

2 (x1, x2)
∣∣
2-leg= f 11νµ

uu (x1 − x2) : ua(x1)ua(x2) : (B.11)

for (F, f ) = (T , t), (D, d), . . . . Again we choose a normalization ofT
50νµ

2

∣∣
2-leg which is

antisymmetrical inν ↔ µ. Together with the fact that there exists no Lorentz covariant,
antisymmetric tensor of second rank which depends on one Lorentz vector only, we conclude
that

t50νµ
uu = 0. (B.12)

SinceT 10ν
2 also appears in (B.8), we have some information aboutt

10νµ

uA , t
10νµ

Au (B.9) from
the C-number identities expressing (B.8) [2], namely

t
10νµ

Au = −t
10µν

Au and therefore t
10νµ

Au = 0 (B.13)

∂1
ν t

10νµ

uA = 0 (B.14)

t
10νµ

uA = t
00νµ

AA and therefore t
10νµ

uA (y) = t
10µν

uA (−y) (B.15)

wheret
00νµ

AA (x1 − x2) is the C-number distribution which belongs to the operators :Aνa(x1)

Aµa(x2) : in T 00
2 (x1, x2). Note thatd11νµ

uu has exactly the same (amputated) diagrams as
d

10νµ

uA , consequentlyd11νµ
uu = d

10νµ

uA . If we split d
11νµ
uu in the same way asd10νµ

uA , we obtain

t11νµ
uu = t

10νµ

uA . (B.16)

Obviously equations (B.12)–(B16) also hold fort replaced bỹt . Inserting equations (B.9)–
(B16) into (2.39) we see that (2.39) is also fulfilled on the two-leg sector. �

Appendix C. Coboundary-coupling at arbitrary order

To shorten the notation we shall omit the Lorentz indices and define

SrF
67...7ir+1...in
n

def= 1

r
[F 67...7ir+1...in

n + F 767...7ir+1...in
n + · · · + F 7...76ir+1...in

n ] (C.1)

whereF = T , T̃ .
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Proposition 5. Assuming that the identities (2.50a) hold, the following equations are
simultaneously fulfilled to all ordersn ∈ N for F = T , T̃ , if suitable symmetrical
normalizations are chosen:

dQF 7...75...51...10...0
n = i

r+t+s∑
j=r+t+1

(−1)(j−r−t−1)∂jF 7...75...51...151...10...0
n

+ i(−1)s
n∑

j=r+t+s+1

∂jF 7...75...51...10...010...0
n

0 6 r, t, s 6 n r + t + s 6 n (C.2)

and

dQSrF
67...75...51...10...0
n = i

r+t+s∑
j=r+t+1

(−1)(j−r−t)∂jSrF
67...75...51...151...10...0
n

+ i(−1)s+1
n∑

j=r+t+s+1

∂jSrF
67...75...51...10...010...0
n + F 7...75...51...10...0

n

1 6 r 6 n 0 6 t, s 6 n r + t + s 6 n (C.3)

where theF 7...75...51...10...0
n (F 67...75...51...10...0

n ) on the left-hand sides havet indices 5,s indices 1
andr indices 7 ((r − 1) indices 7 and one index 6). All derivatives on the right-hand sides
are divergences.

Note that equation (C.2) is a generalization of gauge invariance (2.35) and (1.8); the
representations (2.34) and (2.49) are special cases of (C.3). The indices may be permuted
in (C.2), (C3) according to (2.19).

Proof. The reasoning runs essentially along the same lines as that of proposition 4.
Therefore, we only give an outline of it. First we consider (C.3). We start with (A.2):

dQA′ 67...75...51...10...0
n =

∑
[(dQT̃ ...

k )T ...
n−k ± T̃ ...

k dQT ...
n−k]. (C.4)

The upper indices of̃Tk andTn−k on the right-hand side are an arbitrary number of indices
7,5,1,0 and at most one index 6. Consequently, we can insert the induction hypothesis
(C.2), (C3) fordQT̃k and dQTn−k and obtain (C.3) for theA′

n-distributions, and similarly
for R′

n, R′′
n . Therefore, we may define the normalization ofR7...75...51...10...0

n by (C.3). This
procedure conserves (C.3) in the splitting (A.7), and the remaining steps do not destroy it
either.

We turn to (C.2). The caser = 0 is the assumption (2.50a). For 16 r 6 n we apply
dQ to (C.3) and use(dQ)2 = 0:

dQF 7...75...51...10...0
n = −i

r+t+s∑
j=r+t+1

(−1)(j−r−t)∂j dQSrF
67...75...51...151...10...0
n (C5a)

− i(−1)s+1
n∑

j=r+t+s+1

∂jdQSrF
67...75...51...10...010...0
n . (C5b)
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Next we again insert (C.3) into both terms on the right-hand side:

(C.5a) = −i

r+t+s∑
j=r+t+1

(−1)(j−r−t)∂j

{
i

r+t+s∑
l=r+t+1 (l 6=j)

±∂lSrF
67...75...51...151...151...10...0
n (C6a)

+ i(−1)s
n∑

l=r+t+s+1

∂lSrF
67...75...51...151...10...010...0
n (C6b)

+ F 7...75...51...151...10...0
n

}
(C6c)

(C.5b) = −i(−1)s+1
n∑

j=r+t+s+1

∂j

{
i

r+t+s∑
l=r+t+1

(−1)(l−r−t)∂lSrF
67...75...51...151...10...010...0
n (C7a)

+ i(−1)s+1∂jSrF
67...75...51...10...050...0
n (C7b)

+ i(−1)s+1
n∑

l=r+t+s+1 (l 6=j)

±∂lSrF
67...75...51...10...010...010...0
n (C7c)

+ F 7...75...51...10...010...0
n

}
. (C7d)

Equations (C.6b) and (C.7a) cancel. In a manner similar to the reasoning after (2.50), the
terms (C.7b) and (C.7c) vanish because ofF ...5...νµ

n = −F
...5...µν
n and the different signs

of the (j, l)- and the(l, j)-term in
∑

j,l (j 6=l) ±∂j ∂lF ...010...010...
n . The latter argument also

applies to (C.6a). (Due to (1.11) the± in (C.6a) is a factor(−1)(l−r−t) if l < j , and a
sign (−1)(l−r−t−1) for l > j .) The expressiondQF 7...75...51...10...0

n = (C.6c) + (C.7d) remains,
which is the assertion (C.2). �
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