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Non-uniqueness of quantized Yang—Mills theories
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Abstract. We consider quantized Yang—Mills theories in the framework of causal perturbation
theory which goes back to Epstein and Glaser. In this approach gauge invariance is expressed
by a simple commutator relation for thiematrix. The most general coupling which is gauge
invariant to first order contains a two-parametric ambiguity in the ghost sector: a divergence-
and a coboundary-coupling may be added. We prove (not completely) that the higher orders
with these two additional couplings are also gauge invariant. Moreover, we show that the
ambiguities of thez-point distributions restricted to the physical subspace are only a sum of the
divergences (in the sense of vector analysis). It turns out that the theory without divergence-
and coboundary-coupling is the simplest one in a quite technical sense. The proofs for the
n-point distributions containing coboundary-couplings are given up to third or fourth order only,
whereas the statements about the divergence-coupling are proved for all orders.

1. Introduction

1.1. The model

In a recent series of papers [1-5] non-Abelian gauge invariance has been studied in the
framework of causal perturbation theory [6, 7]. This approach, which goes back to Epstein
and Glaser [6], has the merit that one works exclusively with free fields, which are
mathematically well-defined, and that one performs only justified operations with them.

In causal perturbation theory one makes an ansatz fothmatrix as a formal power
series in the coupling constant

1

S(g0. g1, g) =1+ 1 /d“xl cedhy T, LX) 8 (1) < 83, ().
= =0

n=1"""i1,...,in
(1.2)
The indicesi € {0, 1, ...,/} label different couplinggy, which are switched by different
test functionsg; € S(R*). The operator-valued distributiofy’*" (x1, . .., x,) has a vertex

of the typeTf atx; (1 <s <n). TheT,’s are constructed inductively from the given first
order (see appendix A). In our model the- 0-coupling

T2(x) B 704 (x) + T2 (x) (1.2)
is the usual three-gluon coupling
T () € Lig fupe A (6) Ay (x) EH (x) (1.3)
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plus the usual ghost coupling

T (x) L' —igfupe * Apa (X ()0 G (x) © . (1.4)

Here g is the coupling constant ang},,. are the structure constants of the group S)J(
The gauge potentiald’, Fi" = 8*A" — 8" A, and the ghost fields,, i, are massless
and fulfil the wave equation. (We work throughout in the Feynman gaugel.)

Gauge invarianceneans roughly speaking that the commutator oftfte’-distributions
with the gauge charge

0% P (3,49 ou,) (1.5)
t=constant
is a (sum of) divergence(s) (in the sense of vector analysis). To first order the following

relation holds:

[0, TP(0)] = i3, T} (x) (1.6)
where
T (x) d:efigfabc[: Apa ) up(X)FY(x) 1 =3 g (0)up(x)9"iie(x) 2] (1.7)

We choose this expression to be the- 1-coupling in (1.1) and call it @-vertex. Note

that only [0, T°4] is not a divergence. In order to have gauge invariance to first order, we
are forced to introduce the ghost couplifif’, equation (1.4). However, the latter coupling

is not uniquely fixed by this procedure. The present paper deals with these ambiguities. We
define gauge invariance in arbitrary order [2] by

[0. T2k, ... x)] =i Y v T2y xy) (1.8)
=1

where the upper index 1 iff%-919-0 js at the/th position. The divergences on the right-
hand side of (1.8) are precisely specifigf--91%%(xy, ..., x,) is the T,-distribution of (1.1)
which has aQ-vertex (1.7) atx; and all other vertices ar&’-couplings, equation (1.2).
Gauge invariance (1.8), which has been proved for all ordéts-5], implies the invariance
of the S-matrix S(g,0,...,0) (1.1) with respect to simple gauge transformations of
the free fields [5]. These transformations are tfree field version of the famous BRS
transformations[8]. Moreover, unitarity on the physical subspadd] can be proved by
means of gauge invariance (1.8). The C-number identities expressing (1.8) imply the
Slavnov-Taylor identitief9]. Finally we mention that the four-gluon interaction is a second
order normalization term, which is uniquely fixed by gauge invariance (see [1, 5] and
equation (2.59)).

Let us turn to the above-mentioned non-uniqueness in the ghost sector. The most popular
method for deriving the ghost coupling is that of Faddeev and Popov. However, this method
of quantization contains loopholes (even in perturbation theory) [10]. Therefore, Beaulieu
[10] determined the quantum Lagrangian from the requirement of its full BRS invariance.
We proceed in an analogous wayur aim is to work out the most general Yang—Mills theory
which is gauge invariant (1.8) for all orders and to investigate the physical and technical
implications of the ambiguities.

1.2. The most general coupling which is gauge invariant to first order

In order to simplify the notation we define an operadigr by means of our gauge charge
0 (1.5)

doA £ QA — (~D2A(-1)%Q (1.9)
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where Q, is the ghost charge operator [11, 12]

0, d:*"fif B i, (x) 9 oty (x) - [Qg.tta] = =ty [Qy. ila] = iy (1.10)

=constant
and A is a suitable operator on the Fock space such that equation (1.9) makes sense. If
the ghost charge oA is an integer, Q,, A] = zA, z € Z, the expression (1.9) is the
commutator or anticommutator @ with A. Note the product rule

do(AB) = (dpA)B + (—=1)%A(~1)%d,B. (1.12)
One easily verifies [1] that

02=0 (1.12)
which implies that

(dp)* = 0. (1.13)

Becausel,, is nilpotent, it can be interpreted as coboundary-operator in the framework of a
homological algebra [11]. (The gradiation is given by the ghost charge (1.10).) Therefore,
we call an element of the range (kernel)dy a coboundary (cocycle).

Let us add a coboundary

P1doK1(x) B1 € R arbitrary (1.14)
with
K1(0) L g e : 10a (0)itp ()il (x) - (1.15)

to TP(x). Due to (1.13), gauge invariance to first order (1.6) remains true with the same
Q-vertex T (1.7). Moreover, we add a divergence

B20, K5 (x) B2 € R arbitrary (1.16)
with
KLY Eigfupe © AL (0)up (0t (x) : (1.17)

to Tlo(x). Simultaneously addinggdy K (x) to Tllv(x), our gauge invariance (1.6) is
obviously preserved. Are there further couplings which are gauge invariant to first order?
The answer is ‘no’ [11, 13], if the following, physically reasonable requirements are
additionally imposed.

(A) The coupling is a combination of at least three free field operators.

(B) The coupling has mass-dimensiagh 4. This guarantees (re)normalizability of the
theory, if the fundamental (anti)commutators have singular c&d@a?, A})]) = —2 and
w({ug, p)}) = —2 (see appendix A and [2]).

(C) Lorentz covariance.

(D) SU(N)-invariance.

(E) The coupling has ghost charge zer@,[ 7] = 0.

(F) Invariance with respect to the discrete symmetry transformations P, T and C.

(G) Pseudo-unitaritys; (g5, 0, ..., 00X = S1(go, 0, ..., 0)~* forcespy, B, to be real. §; is

the first ordem = 1 of (1.1) and K is a conjugation which is related to the adjoint [4, 12].)

Remarks. (1) The self-interaction of the gauge bosdi$ (1.3) is unique. There is only
an ambiguity in the ghost coupling.

(2) In [5] the coupling to fermionic matter fields in the fundamental representation was
studied in detail. It is easy to see that the above requirements fix this coupling uniquely.
Therefore, we do not consider matter fields in this paper.
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1.3. Outline of the paper

The paper yields the following results.

(A) The higher orders with divergence- or coboundary-coupling (1.14)—(1.17) are gauge
invariant for all values of81, 82 € R (sections 2.2 and 2.4). (For the coboundary-coupling
this will be proved up to third order only.) The analogous result for the full BRS symmetry
in the usual Lagrangian approach is known in the literature, see, e.g., [10]. However, only
a one-parametric ambiguity is studied there. This difference will be discussed in remark (4)
of section 2.7.

(B) We will show that theT,,’s with divergence-coupling are divergences with respect
to their divergence-vertices (section 2.2). Thes (1 < n < 4) with coboundary-coupling
are divergences too, if they are restricted to the physical subspace [4] (section 2.8). This
will be an immediate consequence of a representation of thesewhich will be proved
in section 2.4.

(C) The results at higher orders about the divergence-coupling and partly the results
about the coboundary-coupling are independent on the explicit expressions (1.2)—(1.4) and
(1.14)—(1.17) of the couplings (section 2.5). They apply to any gauge-invariant quantum
field theory.

(D) Gauge invariance for second-order tree diagrams requires normalization terms,
namely the usual four-gluon interaction and a four-ghost interaction (section 2.7). (The
latter appears only fo€B1, B2) # (0,0).) By studying these normalization terms we will
find a criterion which reduces the freedom in the choicgnf8, € R to a one-parametric
set (sections 2.7 and 2.8). We will mention a second, quite technical criterion which
gives another restriction g#;, 82 (section 2.8). Together we will see that the theory with
B1 = 0= B, is the simplest one.

(E) The Q-vertex is not uniquely fixed by gauge invariance to first order, equation (1.6).
In order to prove gauge invariance higher orders of the theory(Tl0 + B1doK1 +
B20,K%), B1, B2 € R (equations (1.2)—(1.4), (1.14), (1.16)), it is not necessary to modify
the above introduce@-vertex (equation (1.7) plug.dy K5). Therefore, the ambiguity of
the Q-vertex is not very interesting. Nevertheless, we show in section 2.3 that the possible
modifications of theQ-vertex do not destroy gauge invariance at higher orders.

(F) In appendix C we assume that certain identities hold. They exclusively concern the
starting-couplingl?? (1.2)—(1.4), itsQ-vertex Tt (1.7) and its Q-Q-vertex’ T introduced
below (2.5), and are a kind of generalization of gauge invariance (1.8). A special case of
this assumption is verified in appendix B. By means of these identities we will be able to
prove the results about the coboundary-couplingafibrorders.

2. Divergence- and coboundary-coupling at higher orders

2.1. Preparations

In order to study thel,,’s with a divergence- (1.16) and/or a coboundary-coupling (1.14)
at higher orders: > 2, we define a big theory which contains these couplings and some
auxiliary vertices

S1(80. 81 -0 87) = / dhx {T2(x)g0(x) + T (x) g1, (x) + T2(x)g2(x) + T2 (x) g0 (x)

+ T (0) gay (%) + T (X) g (%) + TL(X)g6(x) + T (x)g7(x)} (2.1)



Non-uniqueness of quantized Yang—Mills theories 7601

whereT?, T} are given by (1.2)—(1.4) and (1.7); furthermore,
def

T (x) = B2Kj (x) (2.2)
T2(x) L9, T (x) = 20, K3 (x) (2.3)
i () Lo T (x) = Pado KL (x) (2.4)
T2 () € Lig fupe © 1t (O)up (6) F/P (x) 1= =T (x) (2.5)
T8(x) &' p1K1(x) (2.6)
and
7 def 6
Tl ()C) = dQTl (X) = ,BldQKl()C). (27)

For technical reasons the divergence-coupliffg(2.3) and the coboundary-couplirigy’
(2.7) are not directly added ttif; they are both smeared out with a separate test function.

The appearance of the vertéf”“ is motivated by the relation
doT (x) = i0, T2 (x). (2.8)
Therefore, we sometimes cdlf the ‘Q-Q-vertex’. Furthermore, note théff”“ is a cocycle
doT"" (x) = 0. (2.9)

The verticesT{, T and T¢ are fermionic; all other vertices are bosonic. The first ones
give rise to some additional minus signs in the inductive construction of;flse but there

is no serious complication (see the appendix of [3]). We are interested in the physically
relevant theory

T,(x1,...,%,) def Z T,fl"'i” (x1, ..., Xp) (2.10)

which corresponds to the choi(g,ed:Ef go=g=g7#0andg; =0, g3, =0, g4y =
0, gsv, = 0 andgs = 0 in thenth-order S-matrix S, (go, g1, - - ., g7). Gauge invariance in
the sense (1.8) of this theory is formulated in terms of@heerticesT;", 7 andT 2" 0.
This means that to first order

doTY =id, T (2.11)
doT? =id, T (2.12)
doT{ =0 (2.13)

and that to arbitrary order

dQ Tyfl'”in = Z a]l) Trfl...i;,l i+lipg1.0y v (214)

=1

whereiy, ..., i, € {0,2,7} and
pis8.iry &g (2.15)

We shall often use the property thBf-C is gauge invariant (1.8) [1-5].
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2.2. Higher orders with divergence-coupling

We are going to prove the following proposition.

Proposition 1. Choosing suitable normalizations, the relations

Fnz"'zo'“o(xl, X)) = 8&1 o 3;2,- Ef"AO'"OM'““" (X1, -+ vy Xn) (2.16)
Fr?z..,zo...m(xl’ X)) = 352 . a;r E?4...4o...om2...ur (X1y - e vy Xn) (2.17)
FﬂZ...ZlO..Ov(xL i Xn) = 3&1 . 3:“ F;L.Ala..oﬂl...u,V(xL o Xy) (2.18)

hold for all F = A", R',R", D, A, R, T, T, T and to all orders:.

Remarks. (1) The assertions (2.16)—(2.18) are generalizations of (2.3) to arbitrary orders
and mean that the divergence-structurergfcan be maintained by constructing the higher
orders.

(2) Due to the symmetrization (A.14) tte -, an fulfil

Trfl...i,, (X1, ..\ Xy) = (_1)f(n)Tni,,1...iml X1y - - Xorn) VresS, (2.19)

where the Lorentz indices are also permuted, #id) is the number of transpositions of
fermionic vertices inr. Therefore, equations (2.16)—(2.18) remain true %or 7,,, if the
indices are permuted according to (2.19).

(3) We will see in the proof that th&,*’s on the right-hand side can be normalized
in an arbitrary symmetrical way. (A normalization is said to be symmetrical if the
corresponding7;- satisfies (2.19).) However, the normalization of tig?’s on the

left-hand side is uniquely fixed by the normalization of tHe*-’s.

Proof. We show that equations (2.16)—(2.18) can be maintained in the inductive step
(n — 1) — n described in appendix A. Obviously there are only two operations in this
step which need an investigation, namely (A) the construction of the tensor products
in A/, R, R (equations (A.1)—-(A.3)) and (B) the distribution splitting, = R, — A,
(equations (A.7)).

(A) Let us consider equation (2.17) fer, - (equation (A.2))

A;132..20...0U (xl’ . ’ xn) — Z Tk32...20...01) (X) T’ILZ;}CZO...O(Y'7 xn)
X,Y,(x1€X)

+ Z Tkz"'zo"'o(X)Tn3_2;(“20“'0“(Y,x,,). (2.20)
X.Y,(x1€Y)

Inserting the induction hypothesis (2.16), (2.17) for lower orders — k, we obtain

(220) — Z 852 L 8/; Tk34...40...0vu2mux (X)aj_

—5 4. 40...00L5 41 [y
o O TS (Y x)
(x1€X)

+ Z ail . 3;{ Tk4...40...0M1.../L,;(X)aZ . 8;:3 Tr134.k..40...0\)//.H2...;L,(Y7 .X,,)

Wsi2 -
(X1€Y)

=07, 0y, AZEACOE A (g ). (2.21)

The other verfications of (2.16)—(2.18) fdr,, R,, R, are completely analogous.
(B) According to (A) theD,’s, equation (A.4), fulfil (2.16)~(2.18). LR 3440 Ovkz-witr
be an arbitrary splitting solution ap;*-4%-%"#2#" Then the definition

def .2

Rsz..zo..‘OU(xl’ o xn) pacd auz . a/l;' R24...40...0UM2...M1' (xla e, xn) (222)
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yields a splitting solution oD32+20-0" becauser32-2%-% (equation (2.22)) has its support

in ", (x,) (equation (A.6)) andR3%-20-0v = p32-20-0v on T (x,) \ {(xy, ..., x,)}. The
procedure for equations (2.16), (2.18) is similar. O

Applying d, to (2.16) we see that, T>-2%-0 is a divergence
doT7 2001, ..., xa) = 0,0, do T 400t (x, L xy) (2.23)

if there is at least one divergence-vertEx. However, the divergences on the right-hand
side of (2.23) are derivatives with respect to the divergence-vertices and generally not with
respect to theD-vertices. Consequently, equation (2.23) does not mean gauge invariance

Proposition 2.  Starting with arbitrary symmetrical normalizations @f*-4%-° and
7441000 144001 there exists a symmetrical normalizatiorgf*-4%-©0, ... 744300
such that the equation

+ar+lT4...410..0;L1...u,v 4t " T4...4O...01u1mu,\1] (2 24)
v n von :
holds for all orders: and forr = 1,2, ..., n verticesT;* and T2, respectively.

Remarks. (1) The assertion (2.24) is a kind of gauge invariance equation, which is a
generalization of (2.4) and (2.11) to higher orders. y

(2) We will prove (2.24) for allF,,, F = A, R',R",D, A, R, T', T, T by induction
onn.
(3) Applying ajl...a;'_ to (2.24) we obtain the following corollary by means of
proposition 1.
Corollary 3.  With the normalization of (2.16) the distributiong?-20-0 F =
A R.,R’,D,A R T, T,T are gauge invariant, i.e. they fulfil (2.14).
Proof of proposition 2. The proof follows the inductive construction of ti%g’s. Since
(2.24) is a linear equation, we merely have to consider the same operations (A) (construction
of tensor products) and (B) (distribution splitting) as in the proof of proposition 1.

(A) Inserting the induction hypothesis (2.24) or gauge invariance (1.8)dpf4%-°
anddo 74490 in

dQA’/IA..Ao...om...M, (1, ... %) = Z [(dQ Tk4"'40"'0’“"'““’(X))Tn4;;(40“‘0“”1“'”"(Y, x,)
XY

+ fk4...40...0u1.“/45 (X)dQ Tn4:}{40...0m+1,,,p,,.(y’ Xn)] (225)

one easily obtains the result that thé¢-distributions fulfil (2.24), and similarly this holds
for R, R).

n n
solutions OfD:ll..AO...O’ D:...410...0’ o Dﬁ...40...01’ D;l34...40...0’ o D’?"'430”0. Due to (A) the
D,-distributions fulfil (2.24). Since the operatafg andd] do not enlarge the support of
the distribution to which they are applied, by the definition
in“""‘O"'O’“"'“’ def dQRj"“O'"O’“'"’" _ [R,‘,‘?""““O"'O’“"'“f 4t R;l...430..0;41...;¢,.

+ 8:}’+1R:M410..0u1.../4,v N a‘r}lR;l..AO...Olﬂl...u,.v] (226)

we obtain a splitting solution afp3*-4%-%+# - Opviously theT! £' R, — R -distributions

fulfil (2.24) and this equation is maintained in the symmetrizaipr-> 7, (A.14). a



7604 M Diutsch

2.3. Non-uniqueness of the Q-vertBX' at higher orders

The total Q-vertex Ty, L7 4 7% of the theory (2.10) is not uniquely fixed by gauge

invariance in first-ordedy (77 4+ TZ + T/) = id,Ty};. One has the freedom to repla&g,
by

T p e T, +yB" y € C arbitrary (2.27)

if 9,B” = 0. Requiring additionally thaB” should fulfil the properties (A), (B), (C) and
(D) listed in section 1.2, and have ghost chargg, there remains only one possibility,
namely

BY(x) = 9,D""(x) (2.28)
with
D" (x) Eigfipe : ua(x)AL(x) A (x) := —D""(x). (2.29)

This is proved in [11, 13]. Thef,-distribution with a modified Q-vertex 77, , at
x; and with all other vertices being &; £ (19 + T? + T/)-coupling is denoted

by 7, p(x1, ..., xi, ..., x,). That for an original Q-vertex 77, is similarly denoted
by T (X1, ooy Xn), that for a vertexB' by B (x1, ...y Xn), and that for D'* by
D:j‘l(xl, ..., X,). TherelationD"* = — D"" can be maintained in the inductive construction
of the T,’s:

D, = =Dy (2.30)

This is evident for the tensor products (A.1)—(A.3) and for the steps (A.4), (A.13)—(A.15).
Concerning the splitting (A.7), note that the antisymmetrizatiorv(ik» 1) of an arbitrary
splitting solution yields again a splitting solution. Due to proposition 1 (equation (2.16)),
there exists a symmetrical normalization Bf,, which fulfils

By, =0d,D,, (2.31)
Moreover, the normalizations can be chosen such that (2.27) propagates to higher orders:
1) 5 =T,+vBy,. (2.32)
We conclude that
8£ Tnv/l B = all; Tnv/l' (2.33)

AssumingT,, T,, 0=1....nto be gauge invariant (i.e. to fulfil (1.8)), there exists a
symmetrical normalization of the distributior’§), 5, such that7,, 7./, , are also gauge
invariant. The modification (2.27) of th@-vertex does not destroy gauge invariance at
higher orders.

2.4. Higher orders with coboundary-coupling

The results of this section are summarized in the following proposition.

Proposition 4. Choosing suitable symmetrical normalizations the following statements hold
forall F=A"R,R",D,T,T:
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At orders 1< n < 4 the F,,’s with coboundary-coupling have the representation

Frl7“70.“0 {d F67...7O...O +d F767...70...0 4. _i_dQFn7“760..0} (23%)

+ Z P {F67...70...01(1 .Ov + F767...70...010 .Ov IR Fn7...760..010..0u}

l r+1
(2.3%)
and they are gauge invariant (2.14) to orders & < 3
F7'“70“'0 i Z 81 F7m70m010 .Ov (2_35)

I=r+1
where eachF,- hasr upper indices 7 or 6, X r < n, and the upper index 1 is always at
the Ith position.
Equations (2.34), (2.35), the gauge invariance (1.87%f° (n € N) and the second-
order identities

doFy® =i, Fo" — 17 (2.36)
doF3%" = F3™" (2.37)
doFy" =id:F,"" (2.38)
doFy®™ = igt F;™" — 0?2 Fy™" (2.39)

can all be fulfilled simultaneously.

Remarks. (1) Replacing Fix-# (x1, ..., x,) by Ti*(x1)---T}"(x,) and applying (1.11),
(1.13), (2.7)—(2.9), (2.11) and (2.13), equations (2.34)—(2.39) are obviously fulfilled—this
is the intuition.

(2) Due to (2.19), similar equations with permuted upper indices hold;fofT,.

(3) Applying dy to (2.34) we obtain
dQ Fn7...70...0 — i Xn: a‘l){dQ F:S7...70...010..0V R dQF;Z..]GO...OlQ..OV}' (240)

r I=r+1

However, this is not gauge invariance in the sense of@heertices (2.14). The latter is
given by (2.35).

(4) By means of (2.34), (2.35) the list (2.36)—(2.39) of second-order identities, which
are a kind of gauge invariance equations, can be extended:

doFJ° = ia?FJY (2.41)
doFj"=0 (2.42)
doF£° = FJ° — ig? FSv (2.43)
NdoFY' +doF;% = Fj'. (2.44)

Proof of proposition 4. (A) Outline.The proof of (2.34), (2.35) is by induction for order
However, we will see that the proof of (2.35) for orderneeds identities of the type
(2.36), (2.38), (2.39) at lower ordeks< n — 1. However, equation (2.39) cannot be proved

by means of the general, elementary inductive methods of this section; it needs an explicit
proof which uses the actual couplings (1.2)—(1.4), (1.7) and (2.5). This proof, which is
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given in appendix B, is similar to the proof of gauge invariance (1.8 ¥t To prove an
identity analogous to (2.39) at higher orders (see equationgRtlow), requires a huge
amount of work (cf [2-5]), which is not done in this paper. Therefore, the inductive proof
of gauge invariance (2.35) stopsmat= 3. Moreover, the proof of (2.34) at orderneeds
(2.35) at lower order¢ < n — 1. Consequently, the representation (2.34)Fgf "% will

be proved fom < 4 only.

(B) Proof of (2.34) by means of (2.34), (2.35) at lower ordeY§e start with equation (A.2):

4 S5
An7"'70'"°(x1, LX) = Z{rTk7...70...o(X)Tn7;}(70m0(y’ x,) (2.4%)
XY
i gTZ""’"'O(X)TZ;;ZO“'O(Y, xn)} (2.4%)
r

hypothesis (2.34) fof;”-7%- into (2.4%) (equation (2.34) foff/-/%C into (2.4%)). Then
we apply (1.11) to the terms with & -operator and obtain

- 1 -
iTk7"'70'"0(X)T,Z:}ZO"'O(Y, -xn) — |:dQ(Tk67"'70m0(X)TJ;}ZOWO(Y, -xn)) (24&)
r r
+ fk67...70...0(X)dQ Tn7:}(70...O(Y’ xn) + . + (248))
k ~
+l Z {(811} Tk67...704..010...01} (X))TJ:}ZO'"O(Y, -xn) + .. }] (24&)
I=s+1

and similarly for (2.45). The next step is to insert the induction hypothesis (2.35) or
gauge invariance (1.8) (the latter in the special cases = 0) into dp7,//%°(Y, x,,) in
(2.4&). Then we see that the -distributions fulfil (2.34): the terms of type (2.46add
up to (2.34); (2.46) and (2.48) can be combined and all terms of this type give together
(2.34). Similarly one proves that th& -, R/- and, therefore, th®,-distributions satisfy
(2.34).

We turn to the splitting (A.7). Let RS7-70..0 R767.70.0° R6T..70.010.0v
R67--710.010-0v """ "he arbitrary splitting solutions of the correspondify--distributions.
By means of the definition

def 1
R7-70-0 de: ;{dQRS7"'7O"'O+dQRZG7'"70'"O+- )
. n
l
+; Z 9] {ROT-70-010.0v | R767.70.010.00 | (2.34)
I=r+1

we obtain a splitting solution ofD/-7°-0  analogously to (2.22), (2.26). Obviously
equation (2.34) is maintained in the remaining steps, namely the constructiffy @j
and 7, (equations (A.13)—(A.15)).

(C) Proof of (2.35) by means of (2.34) for the same ordeaind by means of (2.34), (2.35)
and identities of the type (2.36), (2.38), (2.39) for lower order©ne can easily verify

(by inserting (2.35) and (1.8) for lower orders) that tA¢-, R-, and R/ -distributions

fulfil (2.35). Therefore, as usual gauge invariance (2.35) can be violated in the distribution
splitting only. However, to prove that this violation can be avoided by choosing a suitable

normalization, is a completely non-trivial business [1-5]. Moreover, the normalization of
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T7-70-0 is restricted by(2.34). Therefore, we use another route to prove (2.35)Tf0r7,.

We show that the right-hand side of (2.40) agrees with the right-hand side of (2.35), if a
suitable symmetrical normalization @f-7%-010-% 1 < <n — 1, is chosen. (The case

r = n is trivial.) For this purpose we consider

A;7...70...010..Ov _ }{dQAI/167...70...010..0v 44 dQA:J..JGO..OlQ..OV} (247)
r

where the upper index 1 is always at flieposition. We insert the definition (A.2) of th -
distributions. Similarly to (2.25) we then apply (1.11) and the induction hypothesis, i.e. we
insert (2.7), (2.8), (2.11) and (2.13)/if= 2, and additionally (2.36), (2.38), (2.39), (2.41)-
(2.44) if n = 3. In this way we obtain

n

_ i j £/67..70..010..010...0pv j 4/7..760..010..010..0v

4an="1 3[4, Ty ] (2.48)

r
J=r+1(j#D)

+9, A/67-T0.050.00 | gl A/7.-760.050. Ovu} (2.4%)

wtn

In (2.487) the two upper indices 1 are at thi¢h and/th positions, and we have a plus
(minus) if j <1 (j > 1). One proves (2.47)%= (2.48) for theR)-, R/ -distributions in a
similar way.

Analogously to (2.30), the antisymmetr§,”* = —T*', equation (2.5), can be
preserved in the inductive construction of thg’s. Startlng with arb|trar3/ g)llttlng
solutions R67...7O...050 Ovu — R67...70...050 O;w7 ) RZ .760..050..0v 7..76 Opv

R67---7°---01° 01007 R[-760.010.010.0 \yg may (in a manner similar to that fae. 34))

This equatlon is not destroyed in the constructlorT,pr and7,. Summing up, we have
proved

1
F"7...7O...010..0v _ ; {dQ Fy[67...70...010.‘0v 44 dQ Fn7...760..010..0v}

. n
_ l{ Z [:taj F67...7O...010 .010..0uv 4.t a] F7 .760..010..010.. 0/4\1]
- non

J=r+1(j#D)

+8LE?7"'70"'050 T 8LFH7...760..050..OV;L} (2.49)
for all F = A/, R,, R”, D,A, R, T/, T, ’f and forn < 3’ 1 <r<n-— 1. We insert this
equation into

n

1
Z ai{FJ"jO'"OlQ"Ov _ ;[dQ Fr?7...70...010..0v 4t dQ F;Z“]GQ“O]'Q"OV } (250)
I=r+1

for F = T,T. Taking the d|fferent signs of thdj,[)- and the (I, j)-term in
>t Gy T0'87 E;010-010- and o = —F;>"™ into account, we see that (2.50)
vanishes. This is the desired result.

Proof of equations (2.36)—(2.39).The first identity (2.36) is the case = 2, r = 1 of
(2.49). All of equations (2.36)—(2.39) are easily verified for #ig-distributions, etc, and,
therefore, can be violated only in the splitting. The latter is no problem for (2.37), since
we may def|neR57”" L1 do RS for an arbitrary splitting solutiorkS®. Applying dy to
(2.36), we obtaln (2.38) by means of (2.37). Equation (2.39) remains, which is proved
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in appendix B by explicitly inserting the actual couplings. It turns out that there exists a
normalization of7;% (xy, x2) = T2 (x2, x1) such that (2.39) and gauge invariance (1.8) (to
second order) are satisfied simultaneously. One easily verifies that this is the only problem
of compatibility in (2.34)—(2.39) and (1.8). For example, to second order the distributions
7,2 = 1%, T8, T, T can be normalized in an arbitrary symmetrical way. Then
the normalizations of '}/, 7,7, T./°, T are uniquely fixed by (2.36), (2.37), (2.43), (2.44),
and all identities (2.36)—(2.38) and (2.41)—(2.44) are fulfilled. The remaining distributions
720, 74° T;° and T;}* appear only in (1.8) and (2.39). O

If the identities ¢ = T, T)

t+s n
5..51..10...0 . j—t—1) qj 5...51..151..10...0 . K j 75...51...10...010..0
doF,; =i ) (DU, FiED ) o,
j=t+1 j=t+s+1

neN 0<t,s<n t+s<n (2.50)

on the right-hand side are divergences, the Lorentz indices being omitted), one can prove the
representation (2.34) and gauge invariance (2.35) for all orders. This is shown in appendix C
by a generalization of the proof shown here. Unfortunately, an inductive proof ofa)2.50

by means of the simple technique of this section fails because of the splitting (A.7): there
is no term in (2.58) which has neither @y-operator nor a derivative. We emphasize that

the identities (2.58) do not depend on the explicit form (1.14), (1.15) of the coboundary
coupling (no upper indices 6 or 7 appear in (AP0 These identities concern solely the
starting-couplingl??, its Q-vertex T} and its Q-Q-vertex T;>.

Remark. The compatibility of (2.39) and gauge invariance (1.8) to second order is
remarkable in the tree sector: each of these two identities fixes the normalizatigff
uniquelyand in fact these two normalizations agree (see appendix B and section 3.2 of [5]).
This is a further hint that our gauge invariance (1.8) relies on a deeper (cohomological?)
structure. Knowledge of the latter would presumably shorten the proof of (1.8) and would
be an excellent tool for proving the missing identities (2)50

2.5. Generality of the results

In the preceeding sections 2.2 and 2.4, the explicit structures of the starting thigory
(1.2), of the corresponding@-vertex T (1.7), of the divergence-coupling (1.16), (1.17)

and of the coboundary-coupling (1.14), (1.15) have not been needed. We have used only
the following properties.

(i) The starting theoryTl0 is gauge invariant with respect to thgvertex Tf” in all orders
which are considered.
(i) There exists aQ-Q-vertex Tf"“(x) which fulfils

T = —T" doT™ =0 doT(x) = i0, T2 (x). (2.51)

(iif) The second-order identity (2.39) holds and is compatible with gauge invariance (1.8)
of 7.

Only (i) is needed in section 2.2. Therefore, the results about the divergence-coupling
apply to any gauge-invariant quantum field theory, e.g. to quantum gravity [14]. This also
holds for (2.34) to second order, i.e. (2.43), (2.44).

If in addition (ii) is fulfilled (doT7 = O is not needed for the following statement),
gauge invariance (2.35) is proved to second order (i.e. equations (2.41), (2.42) are valid),
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and this implies the identities (2.34) up to third order. Note that the modifiecertex
Tip (2.27) also satisfies (ii):

v . 5v
doTy1 5 = i0,Ty g (2.52)
with
T E T —iydgD™ = —T2W  dTyy =0, (2.53)

For a model which satisfies (i), (ii) and all identities (2a5Qequation (2.39) is a
special case of the latter), the statements (2.34), (2.35) about the coboundary-coupling are
also proved for all orders.

2.6. n-point distributions with divergence- and coboundary-coupling

The general case (2.10) @f containing the ordinary Yang—Mills couplin@f, divergence-
and coboundary-coupling can easily be traced back to the results of the preceeding sections
2.2, 2.4 and 2.5. We replac®’ by

TOLI 70 L 72 = T+ Br0,K) (2.54)

and T by

T LT 4 7 = T — iBdy K. (2.55)
Due to corollary 3, th&X-theory is gauge invariant with respect to tBevertex 7> in all
orders, i.e. property (i) of section 2.5 is fulfilled. Obviously property (i) also holds with
the old T>-vertex (2.5):do T} = ia,LTf””“. It would be very suprising if (2.39) would be
wrong for the(T?, Tllv, Tf’”")—couplings. By means of proposition 4 we conclude that the
generaln-point distributions (2.10) (with coboundargnd divergence-coupling) are gauge
invariant to second (and most probably to third order), and we obtain the representation
(2.34) with respect to the coboundary-vertices up to third (fourth) order.

Let us describe an alternative method. We repl&fdoy

TOL O 4 77 = T + BrdyK;. (2.56)
The Q-vertex (1.7) needs no changeyp 7y = i9,T;". Proposition 4 (2.35) tells us that
the Tlo—theory is gauge invariant up to third order. Applying corollary 3 we obtain gauge
invariance (2.14) of the generg)’s (2.10) up to third order. Moreover, due to proposition 1,
these distributions are divergences with respect to their divergence-vertices at any order.

2.7. Gauge-invariant normalization of second-order tree diagrams
We only consider the tree sector and start with the following normalizatiof Of1, x2)

(2.10) (0 E' 70 4+ 720 4 72 + 722 1+ 10+ 797 + T]7 + T2" + TJ?). The C-number
distributions ofT5g|yee (the lower index O indicates this special normalization) are

to(x1 — x2) ~ DF (x1 — x2), 3*DT (x1 — x2), 343" DF (x1 — x2) (2.57)

and they have no local terms. The singular ordesf 7 (the number of derivatives oR”

in (2.57)) can be computed from the combinati@rof the four external free field operators
(seew(0) in (A.17)) and isw(0) = —2, —1,0. For each four-leg combinatio® with
®(0) =0 we may add a local term

No(x1 —x2) = Cod(xy — x2) : O(x1 — x2) : (2.58)
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to T»o, WhereCp is a free normalization constant (A.12). Gauge invariance (2.14) fixes the
values ofCo uniquely [1, 5, 13]. InT° the normalization term

Naaaa(x1 —x2) = —3ig? fupr foar8(x1 — X2) & Apa Ay AL AL (2.59)

is required [1, 5]. This is the four-gluon interaction, which propagates to higher orders
in the inductive construction of th&,’s (see section 4.2 of [15]). The normalization
terms (2.58) off2%, ..., T,/> which are needed for gauge invariance (2.14) can quickly be
calculated by using our results. We have proved #f8t 722, 7,°, T,)" and T2’ are gauge
invariant with the normalizations given by proposition 1, equation (2.16) (proposition 4,
equation (2.34)). (In the case df227 we perform the replacement (2.54), (2.55) (or
alternatively (2.56)), before applying (2.34) (equation (2.16))). Therefore, we simply have
to pick out the local terms i1 7, (= T2%), 81927, (= T?), dp Tf°+i92Tf¥ (= T)°)

and in J(doTf" + doT/%(= T)"). In the tree sector there are no local terms in
70, T4, T2, TS, T2 (their normalization is unique) and, therefore, neither are there any
in dp T, dpTf". All local terms are generated by the divergencesim, *, 81927, %"

or iafTZ“", due toODF (x1 — xp) = §(x1 — x2). It turns out that all these local terms are
four-ghost interactions, which add up to

Nuullﬁ(xl - xZ) = _igz(%(ng)z + /31 - ZﬂlﬂZ)fabrfcdrg(xl - Xz) : Maubﬁcﬁd : (260)
in agreement with the much longer calculation in [13].

Remarks. (1) The powers off1, B2 in (2.60) tell us the origin of the corresponding term.
For example the term- g18, comes fromT'?’ + T,/2.

(2) We have seen that on the tree sector the normalizatiofig%f . ., 7,/? areuniquely
fixed by (2.16) or (2.34). However, this does not imply that gauge invariance fixes the
normalization of7yee, - - ., T, ?lree Uniquely. The latter statement is a by-product of the
calculation in [13].

(3) In agreement with our observations at first order (see remark (1) of section 1.2),
there is no ambiguity in the four-gluon interaction (2.59)—it is independepfi 0B-.

(4) The most general coupling which is gauge invariant (2.14) up to all orders (this is
not proved completely for the coboundary-coupling) has been given. It can be compared
with the most general Lagrangian (written in terms of interacting fields) which is invariant
under the full BRS transformations of the interacting fields—see equation (3.13) of [10].
For this purpose we must choose the Feynman gaugel in this equation. Then one
easily verifies that the terms g and~ g2 in the interaction part of this Lagrangian agree
with (Tf + ,BldQK]_ + ,323qu) ~ g and With Naaaa, Nuwii ~ g2, if we setf, = 261 and
identify the free parameter of [10] with 8, = 28;. There is only a one-parametric freedom
in [10] which is given by adding to the Lagrangian(- - -). The latter is a coboundary with
respect to the BRS operater In doing so the Lagrangian remainsnvariant, due to the
nilpotency ofs. This seems to be analogous to our coboundary-couglialg K1 (1.14).
However, we see from = 281 = B, that there is not a complete correspondence: a change
of « also means the addition of a divergengg, K, (1.16). Since in our framework
the interaction is switched off by e S(R*), our gauge invariance is noQ| 7,] = 0
but [Q, T,] = (divergenceg and, therefore, we have the freedom of adding a divergence-
coupling (1.16) toTy. This explains the fact that we have a two-parametric freedom and
not only a one-parametric one.

(5) We call a normalization ternVy (2.58) ‘natural’, if there is a corresponding non-
vanishing non-local term, more preciselyo|qee (2.57) contains a non-vanishing C-number
distribution t» (with the same®). Naaaa (2.59) is of this kind. It can be generated by
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replacing
0"9"D (x1—x2) by [9"9"D"(x1—x2) — 38""8(x1 — x2)] (2.61)

in 7aaaa [1,5]. The other normalization terms are called ‘unnatural’, since they do
not naturally arise in the inductive construction of thigs - the numerical distribution

do = 0 is split indo(x1 — x2) = 6@ (x1 — x2) — 8@ (x1 — x2). Ny iS unnatural,
because in the corresponding diagrapi’; (x;) and 9,A;(x2) are contracted, which gives
—i8458"9,0,Dg (x1 —x2) = 0. (Dg (x1— x2) is the positive frequency part of the massless
Pauli-Jordan distribution.) Note that the proof of gauge invariance (1.8) at higher orders
n > 3 [2-5] uses normalizations which could be unnatural in an analogous sense.

2.8. Non-uniqueness of quantized Yang—Mills theories

To simplify the discussion we assume that (2.34) and (2.35) hold to any order. Then the
ambiguities of quantized Yang—Mills theories, which are given by the free choice of the
parameterss;, B2 € R, equations (1.14), (1.16), are not restricted by gauge invariance at
higher orders, due to corollary 3 and (2.35). The freedom is reduced to a one-parametric
set if we admit only natural normalization terms for second-order tree diagrams

(52)? 1
B2 P*a (2.62)

This prescription partially agrees with the Faddeev—Popov procedure: the exponentiation
of a determinant can generate only terms quadratic in the ghosts. Therefore, the Faddeev—
Popov method cannot yield a four-ghost interaction.

There is a more technical criterion which gives another restriction of the ambiguities
and roughly speaking requires that the cancellations in the gauge invariance equation (2.14)
be simple To be more precise let us consider this equation for second-order tree diagrams.
In the natural operator decomposition [5] the term9#”5(x; — x2) cancel completely iff

B2 =0. (2.63)

(For B2 # 0 the terms~ 38 : O : must be combined with terms § : O’ :, where the
difference between the two operator combinatidisand O is that®’ has one derivative
more.) Let us assume that one can prove C-number identities (called ‘Cg-identities’
[2-5]) which express gauge invariance (2.14). Then the transition from the natural operator
decomposition of (2.14) to the Cg-operator decomposition (i.e. the op. dec. in which the
Cg-identities hold) is much more complicated féy # O than forg; = 0 = 8, [5]. We
see from (2.62), (2.63) thahe theory with8; = 0 = 8, is the simplest oneHowever, this
does not exclude the other valuesff 82, since we can construct a Lorentz-, S0J¢ and
P-, T-, C-invariant, (re)normalizable, gauge-invariant and pseudo-unitamatrix for any
choice off1, B, € R.

We turn to the physical consequences of the freedom in the choige, 8. For this
purpose we consideP 7, (x1, ..., x,) P, whereT, is given by (2.10) and’ is the projector
on the physical subspace [4]. By meansdofA, = id*u,, dou, = 0, dpii, = —id, A’
and the fact thaé*u, anda, A} are unphysical fields, we conclude that

PdQFn()Cl, ...,x,,)P =0 (264)

where F = A, R,R',D,A,R,T.T,T. Together with propositions 1 and 4
(equations (2.16), (2.34)), we obtain

PT,(x1, ..., %) P = T>*%(x1, ..., x,) + (sum of divergences (2.65)

Nuian =0 &= p1=
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On the right-hand sidéhe dependence gh, 5, is exclusively in the divergenceslowever,
the infrared behaviour of Yang—Mills theories is not under control. Therefore, we cannot
conclude that the divergences in (2.65) vanish in the adiabatic gimit 1.
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Appendix A. Inductive construction of the T;,’s according to Epstein and Glaser

The inputs to the inductive construction of tiigs (1.1) are theT}’s (e.g. equations (1.2)—
(1.4), (1.7), (2.2)—~(2.7)) in terms dfee fields The couplings; are roughly speaking given

by the interaction Lagrangian densities. Let us summarize the inductive step as a recipe.
For the derivation of this construction from causality and translation invariance (only these
two requirements are needed) we refer the reader to [6, 7]. In analogy with (1.1) we
denote thez-point distributions of the invers§-matrix S(go, ..., g)~* by To(x1y o vy Xn).

Having constructed all%, T, for lower ordersk < n — 1, we can define the operator-valued
distributionsR/,, A/,, R/, which are sums of tensor products:

Ryt i) Y T (V) T (X) (A1)
XY
, def ~
A xn, ) =) T T, 4(Y, x,) (A2)
XY
/7 def T
RI(x1 . x) = Te(X) Ty (Y, xy) (A.3)
XY
def def .
whereX = {x;, ..., x;.}, ¥ = {xi,0, ..., %, .}, XUY ={xq,...,x,-1} and the sum is

over all partitions of this kind with X k =| X |<n — 1. In order to simplify the notation,
the Lorentz indices and the upper indidgsienoting the kind of verted}" (x,) (see, e.g.,
equations (2.1)—(2.7)) are omitted. No confusion should arise, sjrisestrictly coupled to
the spacetime argument. One can prove that

def

D, =R, —A, (A.4)
has causal support

suppD,, (x1, ... x,) C (O () UT, 4 (x,)) (A.5)
where
I Go) &G . x) eRYx; e x, + VE VYV j=1....n—1}. (A.6)
The crucial step in the inductive construction is tharect distribution splittingof D,,:

D, =R, — A, (A7)
with

SUPPR,, (x1, ... X,) C TN (xy) and SUPPA, (X1, ... x,) C Ty (xn). (A.8)
For this purpose we expand the operator-valued distributions in the normally ordered form:
Fo(x1,...,x,) = Z fo(xt —Xp, oy Xne1— X) - O(x1, ..y Xp) 8 (A.9)
O
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whereF = R, A, D, R, A, T, T and O(x1, ..., x,) is a combination of the free field
operators. The coefficientf, are C-number distributions. Due to translation invariance,
they depend only on the relative coordinates and, therefore, are responsible for the support
properties. Consequently, the splitting must be done in these C-number distributions.
Obviously, the critical point for the splitting is the UV-point

T )N () ={(x1, .., ) €RYxy =xp=---=x,}.  (A.10)

In order to measure the behaviour of the C-number distribufioim the vicinity of this
point, one defines an index( f), which is called thesingular order of f atx =0 [6, 7].

We will need the following example. Leb?, a def (ay,...,ay), be a partial differential
operator. Then
WD (x1, ... x)) = lal Ear+ -+ + ay. (A.12)

If w(dp) < 0, the splitting ofdp is trivial and uniquely given by multiplication with a
step function [6, 7].

If w(dp) > 0, one must perform the splitting more carefully [6, 7]. Moreover, it is not
unique. One has an undetermined polynomial which is of deg(ég) (the degree cannot
be higher since renormalizability requiresro) = w(dp)),

(do)
FO(XT = Xny + ooy X1 — X)) = 1O+ +) + Z C,D 84D (xy —x,0, . X1 — X))
|la]=0
(A.12)

wherer) is a special splitting solution an@, are the undetermined normalization constants.
If one also performs the splitting in this case by multiplying with a step function, one
obtains the usual, UV-divergent Feynman rules. However, this procedure is mathematically
inconsistent. The correct distribution splitting saves us from UV-divergences.

From R, one constructs

7' E'R, — R (A.13)

n

and7, is obtained by symmetrization df,

o 1 ..
T (X, ooy Xp) = Z —'Tn/ bt (1o Xn)- (A.14)
reS, n:

In order to finish the inductive step we must construct

7, % _-1,—R —R. (A.15)
One can prove that (A.14), (A15) are the corregtoint distributions ofS(go, ..., g) (1.1)
and S(go, ..., &), respectively, fulfilling the requirements of causality and translation
invariance. Note that

0 ¥ w(t0) = w(ro) = o(dp). (A.16)

The undetermined local terms (A.12) go over fropnto 1. The normalization constang,
are restricted by Lorentz- and SNJ-invariance, the permutation symmetry (2.19), discrete
symmetries, pseudo-unitarity and gauge invariance (cf section 1.2). The latter restriction
plays an important role in this paper.

In our Yang—Mills model one can prove by means of scaling properties [7] that

w<wO)Ta_p_g_d (A.17)

where b is the number of gauge bosond,(F), g the number of ghostsu(#) and
d the number of derivativesH, di, ...) in O. The proof of (A.17) in [2] is written
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for 720 and 72%°.  However, it goes through without change for &+~ with
i1,...,i, €{0,1,2, 35,7} (see equations (2.1)—(2.7) for the notation), especially for the
physically relevant7,, (2.10). The couplingg}* and 7° have mass dimension 3 instead
of 4. Therefore, there exists a lower upper bodr{@d) for the singular orde® of diagrams
with at least one verteSCl4 or Tf: 0 <o0) <w(@) =4—b—g—d. The fact thatw is
bounded in the ordet of the perturbation series (here it is even independent) a§ the
(re)normalizability of the model.

Appendix B. Proof of equation (2.39)

Since equation (2.39) is a gauge invariance equation, it can be violated only in the splitting
(A.7) and solely by local terms. No vacuum diagrams appear in (2.39).

B.1. Tree diagrams

We work with the technique of [1]. The splittin®; |ree — R3plwee IS done by replacing
Do(x1 — x2) (which is the mass zero Pauli-Jordan distribution) with its retarded part
Dy (x1 — x2) everywhere. As in (2.57), the lower index 0 Ry, and in T def Ry — RS-
(A.13), (A14) indicates this special normalization in the tree sector. Nu” = §@, in
contrast tdDy = 0. This is the reason for the appearance of local tedths/hich destroy
(2.39)

dQRg'gvhree: iaiRggmhree_ iaiR;éwhree_ A", (B-l)

Picking out all local terms (they all are generated in the divergences on the right-hand side
due toOIDy" = §®) one finds that

A (x1, x2) = —ngab,fcd,{ §(x1— x2) © gty Ay FI
+30"8(x1 — x2) T U (xD)up(x1) A e (x2) Al (x2) :

+[g™0"6(x1 —x2) — " 078 (x1 — x2)] : Ara(x)up(x1) Aye(x2)uq(x2) 1}

=0 B"" (x1, x2) + 109, B"(x1,x2) + dgN"(x1, x2) (B.2)
with
VL d_ef 1.2 . LAV -
B (x1, X2) = 318" fabr fear8(x1 — x2) * uqup AL A} (B.3)
v def . . V.
N (xl, x2) :e _lngabrfcdra(-xl - x2) . A/J.aubAé-LAd .. (B4)

(Note that a term~ f,p, fear8(x1 — x2) : uqupu 0"ty : vanishes due to the antisymmetry of
the operator part i, b, ¢c and the Jacobi identity for thg 's.) Obviously the symmetries

Ton'" (x1,%2) = —Tpp"" (x1, x2) and Tpg" (x1, x2) = —Tp"" (x2, x1) are preserved in the
finite renormalizations
T Ll pn (B.5)
Tzllvu def Tllvu + B"® (BG)
and

TlOu def 10u + N (B.7)
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Due to (B.1), (B2), thes&; -distributions (B.5)—(B7) satisfy (2.39) on tree level, and one
easily verifies that (2.39) fixes the normalization]iglfohree uniquely.

On the other hand the normalization in the tree sectdfj6f (x1, x2) = TP (x2, x1) is
uniquely determined by gauge invariance (1.8) at second order (see section 3.2 of [5])

doT % = id ;> +id?T )" (B.8)

where T2°°|tree is normalized by (2.59) (four-gluon interaction). These two normalizations
of 73 ree (equations (B.7) and (B.8)) agree exactly.

B.2. Two-leg diagrams

We denote the numerical two-leg distributions in the following way:

F3% (61, %) | p0q= fun " (X1 = X2) 1t (x1) A (x2) :

LA (g = x2)  Apa (X (x2) i - T uF e Fuc (B.9)
Fy ™" (1, %9) 5= foM (¥ — X2) & tta (¥t (x2) (B.10)
Fy (51, %2)| = fid ™ (61 = X2) © it (¥1)uta (x2) (B.11)
for (F, f) = (T, 1), (D, d), ... . Again we choose a normalization 6f°”"|2_|eg which is

antisymmetrical inv <> . Together with the fact that there exists no Lorentz covariant,
antisymmetric tensor of second rank which depends on one Lorentz vector only, we conclude
that

2% = 0, (B.12)

uu

Since T also appears in (B.8), we have some information abpfit, 7% (B.9) from
the C-number identities expressing (B.8) [2], namely

P — 0 and therefore 7,0 =0 (B.13)
ortes =0 (B.14)
10 = 0" and therefore 779" (y) = 1.9 (—y) (B.15)

wheretgi”“(xl — x) is the C-number distribution which belongs to the operatots,(x1)

Aua(x2) - in TOx1, xo). Note thatd;,” has exactly the same (amputated) diagrams as

10v 1lvu 10vp . 1lvp 10v .
d, ", consequentlyl;,”" = d, ;" If we splitd,,” in the same way as, ", we obtain

gl — A (B.16)

Obviously equations (B.12)—(B16) also hold foreplaced by. Inserting equations (B.9)-
(B16) into (2.39) we see that (2.39) is also fulfilled on the two-leg sector. O

Appendix C. Coboundary-coupling at arbitrary order

To shorten the notation we shall omit the Lorentz indices and define

. . def 1 . . . . . .
San67...7l,-+1u.ln e 7[Fn67...7l,-+1“4l,, + Fn767...71r+1...l,, NI F;l7...7Gt,A+1.44tn] (Cl)
r

whereF =T, T.
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Proposition 5. Assuming that the identities (2.8Dhold, the following equations are

simultaneously fulfilled to all ordera € N for F = T, T, if suitable symmetrical
normalizations are chosen:

r+t—+s
7..75..51..10..0 _ (j—r—t—1)qj r~7...75...51...151...10...0
doF] =i § (=Y )9/ F
Jj=r+t+1

n

+i(=1)* Z 97 Fn7'"75"'51"'10"'010"0

Jj=r+t+s+1
o<nt,s<n r+t+s<n (C.2)
and
r+i+s .
dQSr F’167...75...51...1O...0 =i Z (_1)(_/—r—f)a_18r FHG7...75...51...151..10...0
j=r+t+l

n
; +1 j 7..75.51.. 10...010.. 7..75.51.. 10...
+i(=1)t Z a]SrFf 5..51 oooo+F’1 5..51..10..0
Jj=r+t+s+1

1<r<n 0<t,s<n r+t+s<n (C.3)

andr indices 7 (r — 1) indices 7 and one index 6). All derivatives on the right-hand sides
are divergences.

Note that equation (C.2) is a generalization of gauge invariance (2.35) and (1.8); the
representations (2.34) and (2.49) are special cases of (C.3). The indices may be permuted
in (C.2), (C3) according to (2.19).

Proof. The reasoning runs essentially along the same lines as that of proposition 4.
Therefore, we only give an outline of it. First we consider (C.3). We start with (A.2):

dQA;167...75...5:L..10...0 — Z[(dQT/é")Triik 4+ Tk"'dQTn'lkl (C.49)

The upper indices of} and7,_, on the right-hand side are an arbitrary number of indices
7,5,1,0 and at most one index 6. Consequently, we can insert the induction hypothesis
(C.2), (C3) fordQTk anddoT,_, and obtain (C.3) for thed, -distributions, and similarly
for R/, R/. Therefore, we may define the normalizationRyf-">-51-10-0 by (C.3). This
procedure conserves (C.3) in the splitting (A.7), and the remaining steps do not destroy it
either.

We turn to (C.2). The case= 0 is the assumption (2.80 For 1< r < n we apply
dg to (C.3) and usédy)? = 0:

r+t+s
dQ FZ...75...51...10...0 = — Z (_1)(_/'—r—f)adeSr F”67...75...51..151..10...0 (Csa)
j=r+t+1
_ l'(_l)s+1 i adeS, F}?7"'75"'51"'10“'010“0. (C5b)

Jj=r+t+s+1
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Next we again insert (C.3) into both terms on the right-hand side:

r+t+s rttts
(C.5a) = —i Z (_1)(_i—r—t)8j{i Z :ta’S,F,?7"'75"'51"'151"151"10"'0 (C6a)
j=r+t+1 I=r+t+1(#))
+i(=D° 2": 818,Ff7"'75'"51"151"10"'010“0 (C6b)
I=r+t+s+1
+ Fn7'"75'"51"151"10'"0} (C60)

n r+t+s
(Ca)) — _i(_l)s-l—l Z 8] {l Z (_1)(l—r—l) alSr F:S?...75...51..151..10...010..0 (C?a.)

j=r+tts+1 I=r+1+1
+i(=1)"*19/ S, FO7-75.51.10.050.0 (C7h)
+ i(_l)erl Xn: :talS F67...75...51...10...010..010..0 (C7C)
I=r+t+s+1 (1))
+ F7'"75'"51"10"'010"0}. (C7d)
Equations (C.B) and (C.3) cancel. In a manner similar to the reasoning after (2.50), the
terms (C.D) and (C.%) vanish because of,; > = —F;>" and the different signs

of the (j,1)- and the(, j)-term in Y=, ;) +979! F;010-010- " The |atter argument also
applies to (C.6). (Due to (1.11) thet in (C.6a) is a factor(=1)!" " if I < j, and a
sign (—=1)="==Y for > j.) The expressiod, F,-">%1-10-0 — (C.6c) + (C.7d) remains,
which is the assertion (C.2). d
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